تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,101 |
تعداد مشاهده مقاله | 2,882,934 |
تعداد دریافت فایل اصل مقاله | 2,090,020 |
Effects of heat generation/absorption on natural convection of nanofluids over the vertical plate embedded in a porous medium using drift-flux model | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 4، دوره 3، شماره 2، شهریور 2014، صفحه 113-123 اصل مقاله (1.23 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2014.65 | ||
نویسندگان | ||
M. Ghalambaz؛ A. Noghrehabadi* | ||
Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
تاریخ دریافت: 10 اردیبهشت 1391، تاریخ بازنگری: 06 شهریور 1392، تاریخ پذیرش: 19 شهریور 1392 | ||
چکیده | ||
In this paper, natural convection heat transfer over a vertical plate in a Darcy porous medium saturated with a nanofluid subject to heat generation/absorption was theoretically studied. The governing partial differential equations were transformed to a set of ordinary differential equations using similarity transformations and solved using finite difference method. The influence of parametric variation of the Brownian motion parameter, thermophoresis parameter and heat generation/absorption parameter on velocity, temperature and nanoparticles concentration profiles was graphically shown. Impact of non-dimensional parameters on the reduced Nusselt number and reduced Sherwood number was also investigated. The results showed that an increase in the heat generation/absorption parameter would increase temperature and velocity profiles; but, it would decrease concentration profiles. Increase of thermophoresis parameter increased magnitude of concentration profiles while not showing any significant effect on velocity and temperature profiles. The results also indicated that increase of Brownian motion parameter did not demonstrate any significant effect on the magnitude of velocity and temperature profiles. It was found that an increase in the heat generation/absorption parameter decreased the reduced Nusselt number whereas it increased the reduced Sherwood number. For negative values of the Brownian motion parameter, increase of the thermophoresis parameter increased the reduced Nusselt and Sherwood numbers. | ||
کلیدواژهها | ||
Nanofluid؛ Natural Convection؛ Porous media؛ Heat generation؛ Drift flux model | ||
مراجع | ||
[1] T. Sudhakar Reddya, M. C. Rajub and S. V. K. Varmc, “Chemical reaction and radiation effects on MHD free convection flow through a porous medium bounded by a vertical surface with constant heat and mass flux”, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 3, No. 1, pp. 53-62, (2013).
[2] A. Noghrehabadi, M. Ghalambaz and A. Samimi, “Approximate solution of laminar thermal boundary layer over a thin plate heated from below by convection”, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 2, No. 2, pp. 45-57, (2013).
[3] M. Gnaneswara Reddy, “Heat generation and radiation effects on steady MHD free convection flow of micropolar fluid past a moving surface”, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 2, No. 2, pp. 1-10 (2013).
[4] R. S. R. Gorla, A. J. Chamkha and A. M. Rashad, “Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid- Natural Convection Dominated Regime”, Nanoscale Res. Lett., Vol. 6, No. 1, pp. 1-9, (2011).
[5] F. M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied and M. R. Eid “Effect of heat generation/absorption on natural convective boundary-layer flow from a vertical cone embedded in a porous medium filled with a non-Newtonian nanofluid”, Int. Commun. Heat Mass. Vol. 38, No. 10, pp. 1414-1420, (2011).
[6] A. Noghrehabadi, M. R. Saffarian, R. Pourrajab and M. Ghalambaz, “Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip”, J. Mech. Sci. Technol., Vol. 27, No. 3, pp. 927-937, (2013).
[7] R. S. R. Gorla and A. Zinolabedini “Free convection from a vertical plate with nonuniform surface temperature and embedded in a porous medium”, J. Energ. Resour.-ASME, Vol. 109, No. 1, pp. 26-30, (1987).
[8] P. Cheng and W. J. Minkowycz, “Free convection about a vertical flat plate embedded in a saturated porous medium with applications to heat transfer from a dike”, J. Geophysics. Res., Vol. 82, No. 14, pp. 2040-2044, (1977).
[9] W. Yu, D. M. France and J. L. Routbort, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements”, Heat Transfer Eng., Vol. 29, No. 5, pp. 432-460, (2008).
[10] W. Daungthongsuk and S. Wongwises, “A critical review of convective heat transfer of nanofluids”, Renew. Sust. Energ. Rev., Vol. 11, No. 5, pp. 797-817, (2007).
[11] K. S. Hwang, S. P. Jang and S. U. Choi, “Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime”, Int. J. Heat Mass Tran., Vol. 52, No. 1, pp. 193-199, (2009).
[12] A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, “Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions”, Heat Mass Transfer, Vol. 49, pp. 1357–1366, (2013).
[13] A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, “Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature”, Int. J. Therm. Sci., Vol. 54, pp. 253-261, (2012).
[14] A. Noghrehabadi, M. Ghalambaz, M., Ghalambaz and A. Ghanbarzadeh, “Comparing thermal enhancement of Ag-water and SiO2-water nanofluids over an isothermal stretching sheet with suction or injection”, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 2, No. 1, pp. 35-47, (2012).
[15] A. Noghrehabadi, M. Ghalambaz and A. Ghanbarzadeh, “Heat transfer of magnetohydrodynamic viscous nanofluids over an isothermal stretching sheet”, J. Thermophys. Heat Tr., Vol. 26, No. 4, pp. 686-689, (2012).
[16] S. K. Das, S. U. S. Choi, W. Yu and T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, New Jersey, Canada, (2007).
[17] K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids”, Int. J. Heat Mass Tran., Vol. 54, No. 19, pp. 4410–4428, (2011).
[18] J. Buongiorno, “Convective transport in nanofluids”, J. Heat Trans.-T. ASME, Vol. 128, No. 3, pp. 240-250, (2006).
[19] A. Noghrehabadi, A. Behseresht, M. Ghalambaz and J. Behseresht, “Natural-convection flow of nanofluids over vertical cone embedded in non-darcy porous media”, J. Thermophys. Heat Tr., Vol. 27, No. 2, pp. 334-341, (2013).
[20] R. S. R. Gorla and A. Chamkha, “Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid”, Journal of Modern Physics. Vol. 2, No. 2, pp. 62-71, (2011).
[21] A. Noghrehabadi, A. Behseresht and M. Ghalambaz, “Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux”, Appl. Math. Mech. -Engl. Ed., Vol. 34, No. 6, pp. 669–686, (2013).
[22] D. A. Nield and A. V. Kuznetsov, “The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid”, Int. J. Heat Mass Tran. Vol. 52, No. 25, pp. 5792–5795, (2009).
[23] M. Hoseinpour Gollo, H. Moslemi Naeini and N. B. Mostafa Arab, "Experimental and numerical investigation on laser bending process", Journal of Computational and Applied Research in Mechanical Engineering, Vol. 1, No. 1, pp. 45-52, (2011).
[24] B. Jamshidi, F. Haji Aboutalebi, M. Farzin, “Finite element prediction of ductile fracture in automotive panel forming: comparison between FLD and lemaitre damage models”, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 1, No. 1, pp. 37-44, (2011).
[25] J. F. Wendt and J. D. Anderson, Computational Fluid Dynamics: an Introduction, Springer, (2009).
[26] G. H. Evans, and O. A. Plumb, “Natural convection from a vertical isothermal surface embedded in a saturated porous medium”. AIAA-ASME Thermophysics and Heat Transfer Conf., Palo Alto, California, Paper 78-HT -55. In: Nield, D., Bejan, A., Convection in Porous Media, Springer New York, pp. 166-167, (2013). | ||
آمار تعداد مشاهده مقاله: 2,823 تعداد دریافت فایل اصل مقاله: 2,624 |