تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,101 |
تعداد مشاهده مقاله | 2,884,244 |
تعداد دریافت فایل اصل مقاله | 2,091,472 |
Initial blank design of deep drawn orthotropic materials using inverse finite element method | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 5، دوره 3، شماره 2، شهریور 2014، صفحه 125-134 اصل مقاله (1.08 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2014.66 | ||
نویسندگان | ||
Hashem Zamanian1؛ Mehdi Bostan Shirin1؛ Ahmad Assempour* 2 | ||
1Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology , Tehran, Iran | ||
2Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran | ||
تاریخ دریافت: 17 اردیبهشت 1391، تاریخ بازنگری: 20 شهریور 1392، تاریخ پذیرش: 31 شهریور 1392 | ||
چکیده | ||
In this work, an inverse finite element formulation was modified for considering material anisotropy in obtaining blank shape and forming severity of deep drawn orthotropic parts. In this procedure, geometry of final part and thickness of initial blank sheet were known. After applying ideal forming formulations between material points of initial blank and final shape, an equation system was obtained in terms of unknown initial positions on the blank sheet. Initial positions of material points were obtained by solving this equation system. In this algorithm, the Hill's anisotropic plasticity and associated plastic flow rule were used. Strain distribution on the final part was obtained by comparing the initial blank and final part. The method was applied for the simulation of drawing an orthotropic blank to a rectangular cup. Accuracy of the presented method was evaluated by comparing the results with numerical forward method and experiment results. | ||
کلیدواژهها | ||
Initial blank design؛ Orthotropic materials؛ Inverse finite element method | ||
مراجع | ||
[1] Catanach, G. Cuff, Fn. Cogswell, “The Processing of Thermoplastics Containing High Loading of Land and Continuous Reinforcing Fibers”. J. Polym. Engng. , Vol. 6, pp. 345-61, (1986).
[2] Cheng, X. Shan, W. Lu, “Effect of Temperature on Mechanical Behavior of AZ31 Magnesium Alloy”,J. Trans. Nonferrous Met. Soc., Vol. 17, pp. 41-45, (2007).
[3] A. Majlessi, D.Lee, “Deep Drawing of Square-Shaped, Sheet Metal Parts Part1. Fem”. Transaction of ASME; Vol. 115, pp. 102-9, (1993).
[4] A Majlessi, D.Lee, “Development of Multistage Sheet Metal Forming Analysis Method”. J. Mat. Shaping Tech; Vol. 6, pp. 41–54, (1998).
[5] Q. Guo J. L. Batoz J. M. Detraux P. Duroux, “Finite Element Procedures for Strain Estimations of Sheet Metal Forming Parts”. Int. J. Numerical Methods in Engineering; Vol. 30, pp. 1385-401, (1990).
[6] L. Batoz, Y. Guo, F. Mercier, “The Inverse Approach with Simple Triangular Shell Elements for Large Strain Predictions of Sheet Metal Forming Parts”. Engineering Computations; Vol. 15, pp. 864-892, (1998).
[7] Guo, Jl. Batoz, “Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach”. Computers and Structures; Vol. 78, pp. 133–48, (2000).
[8] Naceur, A. Delaméziere, J.L. Batoz, Y.Q. Guo, C. Knopf-Lenoir, “Some Improvements on the Optimum Process Design In Deep Drawing Using The Inverse Approach”. J. Materials Processing Technology, Vol. 146, pp. 250–62, (2004).
[9] Azizi, A. Assempur, “Application of Linear Inverse Finite Element Method In Prediction Of The Optimum Blank In Sheet Metal Forming” J. Materials And Design; Vol. 29 , pp. 1965-72, (2008).
[10] Bostan shirin, A. Assempour, “Development of A Multistep Inverse Finite Element Method Based On Unfolding Technique” 20th Annual International Conference on Mechanical Engineering-ISME2012, (2012).
[11] Zamanian, M. Kankarani Farahani, A. Assempour, “Initial Blank Design of Deep Drawn Metal Matrix Composites Using Invers Finite Element Method” 20th Annual International Conference on Mechanical Engineering-ISME2012, (2012).
[12] Q. Liu, J. C. Wang, P. Hu, “The Numerical Analysis Of Anisotropic Sheet Metals In Deep Drawing Processes” J. Material Processing Technology; Vol. 120 , pp. 45-52, (2002).
[13] M. Zaki, A. B. Nassr, M. G. El-Sebaie, “Optimum Blank Shape of Cylindrical Cups in Deep Drawing of Anisotropic Sheet Metals” J. Material Processing Technology; Vol. 76, pp. 203-211, (1998).
[14] P. Correia, G. Ferron, “Wrinkling of Anisotropic Metal Sheets Under Deep-Drawing:Analytical and Numerical Study” J. Material Processing Technology; Vol. 155 , pp. 1604-1610, (2004).
[15] Thuilllier, P. Y. Manach, L. F. Menezes, M. C. Oliveira, “Experimental and Numerical Study of Reverse Re-Drawing of Anisotropic Sheet Metals” J. Material Processing Technology; Vol. 125, pp. 764-771, (2002).
[16] Duchene, A. M. Habraken, “Analysis of the Sensitivity of Fem Predictions to Numerical Parameters in Deep Drawing Simulations” European Journal of Mechanics A/Solids; Vol. 24 , pp. 614–629, (2005).
[17] Salehinia, A. R. Shahani, “Effect of Sheet Anisotropy on the Wear in Deep-Drawing Process of a Cylindrical Cup” International Journal of Mechanical Sciences; Vol. 51, pp. 856–868, (2009).
[18] H. Choi, C. H. Lee, H. Huh, “Sheet Metal Forming Analysis of Planar Anisotropic Materials with A Proper Numerical Scheme for the Blank Holding Force” J. Metals and Materials; Vol. 3 , pp. 408-419, (1998).
[19] Michael Lai, D. Rubin, E. Krempl, “Introduction to Continuum Mechanics”. Oxford: Pergamon Press, (1942). | ||
آمار تعداد مشاهده مقاله: 2,896 تعداد دریافت فایل اصل مقاله: 2,596 |