| تعداد نشریات | 11 |
| تعداد شمارهها | 226 |
| تعداد مقالات | 2,283 |
| تعداد مشاهده مقاله | 3,507,825 |
| تعداد دریافت فایل اصل مقاله | 2,573,707 |
A note on the domination entropy of graphs | ||
| Journal of Discrete Mathematics and Its Applications | ||
| مقاله 2، دوره 10، شماره 1، خرداد 2025، صفحه 11-20 اصل مقاله (282.47 K) | ||
| نوع مقاله: Full Length Article | ||
| شناسه دیجیتال (DOI): 10.22061/jdma.2025.11448.1106 | ||
| نویسندگان | ||
| Arezoo N. Ghameshlou* 1؛ Mana Mohammadi2؛ Amirhesam JafariRad2 | ||
| 1Department of Irrigation and Reclamation Engineering University of Tehran, P. O. Box 4111, Karaj, 31587–77871, I. R. Iran | ||
| 2Department of Electrical Engineering, University of Tehran Tehran, I. R. Iran | ||
| تاریخ دریافت: 21 آبان 1403، تاریخ بازنگری: 07 بهمن 1403، تاریخ پذیرش: 08 بهمن 1403 | ||
| چکیده | ||
| A dominating set of a graph $G$ is a subset $D$ of vertices such that every vertex outside $D$ has a neighbor in $D$. The domination number of $G$, denoted by $\gamma(G)$, is the minimum cardinality amongst all dominating sets of $G$. The domination entropy of $G$, denoted by $I_{dom}(G)$ is defined as $I_{dom}(G)=-\sum_{i=1}^k\frac{d_i(G)}{\gamma_S(G)}\log (\frac{d_i(G)}{\gamma_S(G)})$, where $\gamma_S(G)$ is the number of all dominating sets of $G$ and $d_i(G)$ is the number of dominating sets of cardinality $i$. A graph $G$ is $C_4$-free if it does not contain a $4$-cycle as a subgraph. In this note we first determine the domination entropy in the graphs whose complements are $C_4$-free. We then propose an algorithm that computes the domination entropy in any given graph. We also consider circulant graphs $G$ and determine $d_i(G)$ under certain conditions on $i$. | ||
| کلیدواژهها | ||
| Information؛ domination polynomial؛ domination entropy؛ algorithm؛ circulant graph | ||
|
آمار تعداد مشاهده مقاله: 275 تعداد دریافت فایل اصل مقاله: 214 |
||