
تعداد نشریات | 11 |
تعداد شمارهها | 215 |
تعداد مقالات | 2,169 |
تعداد مشاهده مقاله | 3,023,621 |
تعداد دریافت فایل اصل مقاله | 2,208,633 |
A note on the domination entropy of graphs | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 2، دوره 10، شماره 1، خرداد 2025، صفحه 11-20 اصل مقاله (282.47 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2025.11448.1106 | ||
نویسندگان | ||
Arezoo N. Ghameshlou* ؛ Mana Mohammadi؛ Amirhesam JafariRad | ||
University of Tehran | ||
تاریخ دریافت: 21 آبان 1403، تاریخ بازنگری: 07 بهمن 1403، تاریخ پذیرش: 08 بهمن 1403 | ||
چکیده | ||
A dominating set of a graph $G$ is a subset $D$ of vertices such that every vertex outside $D$ has a neighbor in $D$. The domination number of $G$, denoted by $\gamma(G)$, is the minimum cardinality amongst all dominating sets of $G$. The domination entropy of $G$, denoted by $I_{dom}(G)$ is defined as $I_{dom}(G)=-\sum_{i=1}^k\frac{d_i(G)}{\gamma_S(G)}\log (\frac{d_i(G)}{\gamma_S(G)})$, where $\gamma_S(G)$ is the number of all dominating sets of $G$ and $d_i(G)$ is the number of dominating sets of cardinality $i$. A graph $G$ is $C_4$-free if it does not contain a $4$-cycle as a subgraph. In this note we first determine the domination entropy in the graphs whose complements are $C_4$-free. We then propose an algorithm that computes the domination entropy in any given graph. We also consider circulant graphs $G$ and determine $d_i(G)$ under certain conditions on $i$. | ||
کلیدواژهها | ||
Information؛ Domination polynomial؛ domination entropy؛ algorithm؛ circulant graph | ||
آمار تعداد مشاهده مقاله: 92 تعداد دریافت فایل اصل مقاله: 59 |