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Abstract. A dominating set of a graph G is a subset D of vertices such that every vertex outside
D has a neighbor in D. The domination number of G, denoted by γ(G), is the minimum cardinality
amongst all dominating sets of G. The domination entropy of G, denoted by Idom(G) is defined as
Idom(G) =−∑k

i=1
di(G)
γS(G)

log( di(G)
γS(G)

), where γS(G) is the number of all dominating sets of G and di(G) is
the number of dominating sets of cardinality i. A graph G is C4-free if it does not contain a 4-cycle as a
subgraph. In this note we first determine the domination entropy in the graphs whose complements
are C4-free. We then propose an algorithm that computes the domination entropy in any given graph.
We also consider circulant graphs G and determine di(G) under certain conditions on i.
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1 Introduction

Let G = (V, E) be a simple graph with vertex set V and edge set E. The order of G is
|V| and the size of G is |E|. The open neighborhood of a vertex v in a graph G is the set of all
vertices adjacent to v, and is denoted by N(v) or NG(v) to refer it to v. The degree of v is
deg(v) = |N(v)|. The open neighborhood of a vertex set S is N(S) = ∪v∈SN(v). A graph
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G is C4-free if it does not contain a C4 as a subgraph. The girth of a graph is the length
of a shortest cycle. A dominating set of a graph G is a subset D of vertices such that every
vertex outside D has a neighbor in D. The domination number of G, denoted by γ(G), is
the minimum cardinality amongst all dominating sets of G. For a graph G of order n the
domination polynomial of G, denoted by D(G, x), is defined as follows

D(G, x) =
n

∑
j=γ(G)

dj(G)xj,

where, dj(G) is the number of all dominating sets on the graph G of cardinality j. The
domination polynomials where obtained for very few classes of graphs, including complete
graphs, complete bipartite graph, paths [2], cycles [3], friendship graphs [4], and caterpillar
graphs [17], is still unknown in many classes of graphs.

The concept of information entropy (also known as Shannon entropy) was introduced in
1948 by Shannon [15]. Shannon entropy defines a data communication system composed of
a source of data, a communication channel, and a receiver, such that the receiver can be able
to identify what data was generated by the source, based on the signal it receives through
the channel. Various types of entropy have been already considered, see for example, [7, 9,
13, 16]. It was considered in graphs by Rashevsky in 1955 [14] by considering vertex degrees
of graphs. This concept was further studied, for example, in [7, 8, 10, 19].

Dehmer in 2008 [9] studied information processing in complex networks by considering
graph entropy and information functionals as I(G) =−∑n

i=1 pi log pi, where the pis are vertex
probabilities and the logarithmic phrases have base 2. Recently, Sahin [16] considered a new
information functional and introduced the domination entropy of graphs. For a graph G of
order n without an isolated vertex, the information functional is pi =

di(G)
∑n

j=1 dj(G)
, where di(G)

is the number of dominating sets of G of cardinality i. The domination entropy of G, denoted
by Idom(G) is as follows:

Idom(G) = log(γs(G))− 1
γs(G)

n−2

∑
i=γ(G)

di(G) log(di(G))− n logn
γs(G)

, (1)

where γs(G) is the number of all dominating sets of G. Sahin [16] determined the domina-
tion entropy in some families of graphs including complete graphs, star graphs, double-star
graphs, comb graph and friendship graphs, based on the known results on domination poly-
nomials of these graphs. In this paper we consider domination entropy in graphs whose
complement are C4-free, as important classes of graphs in the information theory and cod-
ing. We note that much have been written on graphs with high girth in information theory
and coding, see for example, [5, 6, 11, 12].

The organization of the paper is as follows. In Section 2 we first determine the domination
entropy in graphs whose complement are C4-free, and then we present an algorithm namely
Algorithm 2.2 that enables us to compute the domination entropy of any given graph G. In
Section 3 we focus on a famous family of graph namely circulant graphs. We first determine
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several domination polynomial coefficients in the general, and then present a new algorithm
namely Algorithm 3.1 which leads to a conjecture on the coefficients of the domination poly-
nomials of circulant graphs under certain conditions.

2 Complements of C4-free graphs

We first determine the domination entropy in graphs whose complement are C4-free.

Theorem 2.1. Let G be a graph with vertex set {v1, ...,vn} such that G is C4-free, and let dj be the
number of dominating sets of G of cardinality j. Then:

(I) dj = 0 if j < γ(G), and

dj =

(
n
j

)
− ∑

vi : n−1−deg(vi)≥j

(
n− 1− deg(vi)

j

)
if j ≥ γ(G).
(II)

Idom(G) = log(γs)−
1
γs

n−2

∑
j=γ(G)

dj log(dj)−
n logn
γs(G)

,

where γs = ∑n
j=γ(G)

(
(n

j)−∑vi : n−1−deg(vi)≥j (
n−1−deg(vi)

j )

)
and dj is described in (I).

Proof. (I) The proof is obvious for j < γ(G), thus assume that j ≥ γ(G). Let Aj be set of all
j-subsets of V(G) that are not dominating sets of G. Then clearly

dj =

(
n
j

)
− |Aj|. (2)

For each set S ∈ Aj, clearly there is a vertex vi in G that is not dominated by S, and so vi
is adjacent to all vertices of S in G, that is, vi ∈

⋂
s∈S NG(s). Since G is C4-free, we find that⋂

s∈S NG(s) = {vi}. Then S⊆ NG(vi), that is, S is a j-subset of NG(vi), where NG(vi)≥ j. Since
NG(vi) = degG(vi) = n− 1− deg(vi), the proof of (I) is complete.

(II) By (1),

Idom(G) = log(γs(G))− 1
γs(G)

n−2

∑
j=γ(G)

dj(G) log(dj(G))− n logn
γs(G)

,

where γs(G) is the number of all dominating sets of G. Clearly γs(G) is the number of all
dominating sets of G of all cardinalities j, where γ(G) ≤ j ≤ n. Now replacing all such djs
(j ≥ γ(G)) with that stated in (I) yields the desired result.

Following the proof of Theorem 2.1, dj = (n
j) − |Aj|, where Aj is set of all j-subsets of

V(G) that are not dominating sets of G. Clearly |Aj| is the number of j-subsets of G that
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have at least a common neighbor in G. In this section we propose an algorithm, namely,
Algorithm 3.2 to compute |Aj| in any graph G, thus enabling to compute the domination
entropy. For this purpose we first give an algorithm, namely, Algorithm, 3.1 which computes
the complement of a graph.

Algorithm 1 Compute-Complement graph(G)
Input: A graph G of order n with V(G) = {0,1, · · · ,n− 1}
Output: The complement graph of G

1 num vertices ← n complement ← [ ] (an empty list of size num vertices) for i =

0, · · · ,num vertices− 1 do
2 for j = 0, · · · ,num vertices− 1 do
3 if i ̸= j and j ̸∈ NG(i) then
4 append j to complement[i]
5 end
6 end
7 end
8 Return G

Algorithm 2 Compute |Aj|
Input: A graph G of order n with vertex set V(G) = {0,1, · · · ,n− 1} and an integer j ≤ n
Output: |Aj|

9 if j < γ(G) then
10 |Aj| = (n

j)

11 end
12 else
13 Calculate Compute-Complement graph(G) complement← G |Aj| ← 0
14 for each j-vertex combination in {0,1, · · · ,n− 1} do
15 k j ← first element of the j-vertex combination common neighbors ←

set(complement[k j]) for each vertex k′ in the j-vertex combination after the first ele-
ment do

16 common neighbors← common neighbors∩ set(complement[k′])
17 end
18 if |common neighbors| > 0 then
19 |Aj| ← |Aj|+ 1
20 end
21 end
22 end
23 Return |Aj|
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3 Circulant graphs

In this section we consider a famous family of graphs, namely, circulant graphs. The
circulant graph Cn(1,2, ...,k) is a graph with vertex set V = {v1, ...,vn} such that for each i, the
vertex vi is adjacent to vi+1, ...,vi+k, where the addition is in modulo n. Figure 1 depicted the
circulant graph C12(1,2,3).

v1

v2

v3
v4v5

v6

v7

v8

v9
v10

v11

v12

Figure 1. Graph C12(1,2,3).

Note that Cn(1,2, ...,k) is a regular graph. Furthermore if n ≥ 2k + 1 then it is 2k-regular,
thus its complement is n− 2k− 1-regular. Thus we have the following result.

Theorem 3.1. Let G = Cn(1,2, ...,k) be a circulant graph with n ≥ 2k + 1. Then
(I) For n− 2k ≤ j ≤ n, dj = (n

j),
(II) For j = n− 2k− 1, dj = (n

j)− n,
(III) For j = n− 2k− 2, dj = (n

j)− nj.

Proof. From Theorem 2.1, we have dj = (n
j)− |Aj|. For n− 2k ≤ j ≤ n, clearly, |Aj| = 0. Thus

(I) follows. We next prove (II). Assume now that j = n − 2k − 1. Let S be a j-subset of G
such that all vertices in S have a common neighbor in G. Since G is n− 2k − 1-regular, we
have S = NG(vi) for some i ∈ {1,2, ...,n}. Then vi is the only vertex in G that is adjacent
to S is G. On the other hand for each integer i = 1, ...,n, S = NG(vi) ∈ Aj. We deduce that
Aj = {NG(v1), NG(v2), ..., NG(vn)}. Consequently, |Aj| = n, and thus the result follows.

(III) Assume that j = n− 2k− 2. Let S be a j-subset of G such that all vertices in S have a
common neighbor in G. Then S⊆ NG(vi) for some i∈ {1,2, ...,n}. It is evident that S ̸⊆ NG(vl)

for l ̸= i. On the other hand for each integer i = 1, ...,n, there are (n−2k−1
n−2k−2) = j set S with |S|= j

and S ⊆ NG(vi). We deduce that Aj = nj and the result follows.

For j ≤ n− 2k− 3, computing dj as a formula is complicated, and the only option is ap-
plied Algorithm 2 when n is small enough. We applied Algorithm 2 on circulant graphs
Cn(1,2) and Cn(1,2,3) with n ≤ 18, and using (3) we obtained the Tables 1 and 2 (see Ap-
pendix A.). According to the values of dj for j ≤ n− 2k− 3 one can have the following new
point of view which results in a conjecture on dj under some certain conditions. As it was
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seen, for each integer j, Aj is the set of all j-subsets of V(G) that are not dominating sets of
G. Then Aj is the set of all j-subsets of V(G) that have at least one common neighbors in
G. We can write |Aj| = ∑n−1

i=1 Mi, where Mi is the number of j-subsets of V(G) with i com-
mon neighbors in G. Let M be (n − γ(G)) × (n − 1) matrix whose rows are indexed with
γ,γ + 1, ...,n− 1 and whose columns are indexed by M1, M2, ..., Mn−1, and the ij entry of M
is Mj, where |A|i = ∑n−1

j=1 Mj. The following algorithm 4.1 can be applied on Cn(1,2, ...,k) for
all k and n to compute the matrix M. Note that it can be seen that γ(Cn(1,2, ...,k)) = ⌈ n

2k+1⌉.

Algorithm 3 Compute Matrix M
Input: The circulant graph Cn(1,2, · · · ,k)
Output: Matrix M

24 max← n− (2k + 1) min← ⌈ n
2k+1⌉ Calculate Compute-Complement graph(Cn(1,2, · · · ,k))

complement← Cn(1,2, · · · ,k) Initialize a (n−min)× (n− 1) matrix M with all zero entries
25 for min≤ i < max+1 do
26 for each i-vertex combinations in {0,1, ...,n− 1} do
27 ki ← first element of the i-vertex combination common neighbors ←

set(complement[ki]) for each vertex k′ in the i-vertex combination after the first ele-
ment do

28 common neighbors← common neighbors∩ set(complement[k′])
29 end
30 if |common neighbors| > 0 then
31 for j = 0, · · · , |common neighbors| − 1 do
32 if |common neighbors| = j + 1 then
33 M[i−min, j]← M[i−min, j] + 1
34 end
35 end
36 end
37 end
38 end
39 Return M

Applying Algorithm 3 on the circulant graphs of small orders yeilds the following con-
jecture.

Conjecture 3.2. Let G = Cn(1,2, ...,k) be a circulant graph with n≤ 4k + 1−⌈ n
2k+1⌉ and ⌈ n

2k+1⌉ ≤
j ≤ n− 2k− 3. Then dj = (n

j)− n ∑
n−2k−j
i=1 (i+j−3

i−1 ).

An example of applying Algorithm 3 on the circulant graph C16(1,2,3) posed in Table 3
(Appendix B.) which confirms the validity of Conjecture 1. Note that for each integer j ≥
3 = γ(C16(1,2,3)), dj = (n

j) − tj, where tj = |Aj| is the number of j-subset S of G such that

all vertices in S have a common neighbor in G. We can write tj = M1 + M2 + ... + Mn−1,
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where for each i, Mi is the number of j-subset S of G such that all vertices in S have precisely
i common neighbor in G.

4 Conclusion

In this paper we studied the domination entropy in graphs. We determined the dom-
ination entropy in graphs whose complements are C4-free, and proposed an algorithm to
compute the domination entropy in any given graph G. We also studied circulant graphs G
and determine di(G) under certain conditions on i which resulted in a conjecture, namely,
Conjecture 3.2. It is a good problem to study these problems for other domination variants.
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Appendix A: Tables 1 and 2.

n\dj d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18
3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 10 10 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 15 20 15 6 1 0 0 0 0 0 0 0 0 0 0 0 0
7 0 14 35 35 21 7 1 0 0 0 0 0 0 0 0 0 0 0
8 0 12 48 70 56 28 8 1 0 0 0 0 0 0 0 0 0 0
9 0 9 57 117 126 84 36 9 1 0 0 0 0 0 0 0 0 0
10 0 5 60 170 242 210 120 45 10 1 0 0 0 0 0 0 0 0
11 0 0 55 220 407 451 330 165 55 11 1 0 0 0 0 0 0 0
12 0 0 40 255 612 852 780 495 220 66 12 1 0 0 0 0 0 0
13 0 0 26 260 832 1443 1625 1274 715 286 78 13 1 0 0 0 0 0
14 0 0 14 238 1022 2219 3040 2891 1988 1001 364 91 14 1 0 0 0 0
15 0 0 5 195 1143 3115 5175 5895 4870 2988 1365 455 105 15 1 0 0 0
16 0 0 0 140 1168 4016 8080 10950 10720 7848 4352 1820 560 120 16 1 0 0
17 0 0 0 85 1088 4777 11645 18700 21505 18513 12189 6171 2380 680 136 17 1 0
18 0 0 0 45 918 5253 15570 30565 39710 39798 30636 18348 8550 3060 816 153 18 1

Table 1. dj’s in Cn(1,2) for n ≤ 18.

n\dj d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18
3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 10 10 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 15 20 15 6 1 0 0 0 0 0 0 0 0 0 0 0 0
7 7 21 35 35 21 7 1 0 0 0 0 0 0 0 0 0 0 0
8 0 28 56 70 56 28 8 1 0 0 0 0 0 0 0 0 0 0
9 0 27 84 126 126 84 36 9 1 0 0 0 0 0 0 0 0 0
10 0 25 110 210 252 210 120 45 10 1 0 0 0 0 0 0 0 0
11 0 22 132 319 462 462 330 165 55 11 1 0 0 0 0 0 0 0
12 0 18 148 447 780 924 792 495 220 66 12 1 0 0 0 0 0 0
13 0 13 156 585 1222 1703 1716 1287 715 286 78 13 1 0 0 0 0 0
14 0 7 154 721 1792 2919 3418 3003 2002 1001 364 91 14 1 0 0 0 0
15 0 0 140 840 2478 4690 6330 6420 5005 3003 1365 455 105 15 1 0 0 0
16 0 0 112 924 3248 7112 10992 12742 11424 8008 4368 1820 560 120 16 1 0 0
17 0 0 85 952 4046 10234 18020 23698 24157 19431 12376 6188 2380 680 136 17 1 0
18 0 0 60 927 4788 14028 28044 41598 47810 43578 31806 18564 8568 3060 816 153 18 1

Table 2. dj’s in Cn(1,2,3) for n ≤ 18.

Appendix B: Table 3.

|A|i\Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
|A|3 112 96 80 64 48 32 16 0 0 0 0 0 0 0 0
|A|4 336 240 160 96 48 16 0 0 0 0 0 0 0 0 0
|A|5 560 320 160 64 16 0 0 0 0 0 0 0 0 0 0
|A|6 560 240 80 16 0 0 0 0 0 0 0 0 0 0 0
|A|7 336 96 16 0 0 0 0 0 0 0 0 0 0 0 0
|A|8 112 16 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|9 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|A|15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Determining Mj(j = 3, ...,16) in C16(1,2,3). Note that it is easy to see that

|A|j = n ∑
n−2k−j
i=1 (i+j−3

i−1 ) for j = 3,4, ...,7.
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