تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,091 |
تعداد مشاهده مقاله | 2,849,565 |
تعداد دریافت فایل اصل مقاله | 2,063,995 |
On the Roman domination number of the subdivision of some graphs | ||
Journal of Discrete Mathematics and Its Applications | ||
دوره 9، شماره 4، اسفند 2024، صفحه 321-333 اصل مقاله (295.77 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2024.11309.1099 | ||
نویسندگان | ||
Rostam Yarke Salkhori* ؛ Ebrahim Vatandoost؛ Ali Behtoei | ||
Imam Khomeini International University | ||
تاریخ دریافت: 05 آبان 1403، تاریخ بازنگری: 30 آبان 1403، تاریخ پذیرش: 11 آذر 1403 | ||
چکیده | ||
A Roman dominating function on a graph G = (V, E) is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V) = ∑u∈V(G)f(u). The minimum possible weight of a Roman dominating function on G is called the Roman domination number of G and is denoted by γR(G). In this paper, and among some other results, we provide some bounds for the Roman domination number of the subdivision graph S(G) of an arbitrary graph G. Also, we determine the exact value of γR(S(G)) when G is Kn, Kr,s or Kn1,n2,...,nk . | ||
کلیدواژهها | ||
Roman dominating function؛ bipartite graph؛ tree | ||
آمار تعداد مشاهده مقاله: 14 تعداد دریافت فایل اصل مقاله: 33 |