تعداد نشریات | 11 |
تعداد شمارهها | 212 |
تعداد مقالات | 2,114 |
تعداد مشاهده مقاله | 2,904,899 |
تعداد دریافت فایل اصل مقاله | 2,120,784 |
A survey on automorphism groups and transmission-based graph invariants | ||
Journal of Discrete Mathematics and Its Applications | ||
دوره 9، شماره 2، شهریور 2024، صفحه 133-145 اصل مقاله (463.42 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2024.10625.1076 | ||
نویسندگان | ||
Reza Sharafdini* 1؛ Mehdi Azadimotlagh2 | ||
1Department of Mathematics, Persian Gulf University, Bushehr 75169, Iran | ||
2Department of Computer Engineering of Jam, Persian Gulf University, Jam, Iran | ||
تاریخ دریافت: 11 مرداد 1402، تاریخ بازنگری: 17 دی 1402، تاریخ پذیرش: 27 دی 1402 | ||
چکیده | ||
The distance $d(u,v)$ between vertices $u$ and $v$ of a connected graph $G$ is equal to the number of edges in a minimal path connecting them. The transmission of a vertex $v$ is defined by $\sigma(v)=\sum\limits_{u\in V(G)}{d(v,u)}$. A topological index is said to be a transmission-based topological index (TT index) if it includes the transmissions $\sigma(u)$ of vertices of $G$. Because $\sigma(u)$ can be derived from the distance matrix of $G$, it follows that transmission-based topological indices form a subset of distance-based topological indices. In this article we survey some results on the computation of some transmission-based graph invariants of intersection graph, hypercube graph, Kneser graph, unitary Cayley graph and Paley graph. | ||
کلیدواژهها | ||
Wiener index؛ hypercube graph؛ intersection graph؛ Kneser graph؛ Paley graph | ||
مراجع | ||
[1] M. Aouchiche, P. Hansen, On a conjecture about Szeged index, European J. Combin. 31 (2010), 1662–1666. [2] Ashrafi, A.R. Wiener Index of Nanotubes, Toroidal Fullerenes and Nanostars. In The Mathematics and Topology of Fullerenes Cataldo, F., Graovac, A. and Ori, O.; Eds.; Springer Netherlands: Dordrecht, 2011; pp. 21–38. [3] A. T. Balaban, P. V. Khadikar, S. Aziz, Comparison of topological indices based on iterated sum versus product operations, Iranian J. Math. Chem. 1 (2010) 43–67. [4] A. T. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl. Chem. 55 (1983) 199–206. [5] A. T. Balaban, Highly discriminating distance based numerical descriptor, Chem. Phys. Lett. 89 (1982) 399–404. [6] Biggs, N. Algebraic graph theory. Second Edition. Cambridge Mathematical Library. Cambridge University Press, 1993. [7] H. Deng, On the sum-Balaban index, MATCH Commun. Math. Comput. Chem. 66 (2011) 273–284. [8] A. Dobrynin, A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086. [9] Darafsheh M. R. Computation of topological indices of some graphs. Acta. Appl. Math. 110, 1225– 1235 (2010). [10] R. Mohammadyari, M. R. Darafsheh, Topological indices of the Kneser graph KGn;k , Filomat 26 (2012) 665–672. [11] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283–296. [12] C. Godsil, G. Royle, Algebraic graph theory, Springer-Verlag New York, Inc. 2001. [13] S. Gupta, M. Singh, A. K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002) 386–401. [14] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087–1089. [15] Harary, F.: Graph Theory. Addison Wesley, Reading (1968). [16] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339. [17] G. A. Jones, Paley and the Paley graphs, Isomorphisms, symmetry and computations in algebraic graph theory, Springer Proc. Math. Stat. 305, Springer, Cham, (2020) 155–183. [18] G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9 (1958) 800–804. [19] R. Sharafdini, T. Reti, On the Transmission-Based Graph Topological Indices, ´ Kragujevac J. Math. 44(1) (2020) 41–63. [20] S. Shokrolahi Yancheshmeh, R. Modabbernia and M. Jahandideh, The Topological Indices Of The Cayley Graphs of Dihedral Group D2n and the Generalized Quaternion Group Q2 n , Italian Journal Of Pure And Applied Mathematics, 40 (2018) 424–433. [21] H. S. Ramane, A. S. Yalnaik, Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons, J. Appl. Math. Comput. (2016) 1–19. [22] A. Loghman, Computing Wiener and hyper-Wiener indices ofunitary Cayley graphs, Iranian J. Math. Chem. (2012) 121–125. [23] R. Modabernia, Some Topological Indices Related to Paley Graphs, Iranian J. Math. Chem. 11 (2) (2020) 107–112. [24] A. I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math. 156 (2008) 125–130. [25] H.S. Ramane, A.S. Yalnaik and R. Sharafdini, Status connectivity indices and co-indices of graphs and its computation to some distance-balanced graphs. AKCE Int. J. Graphs Comb. 17(20) (2020) 98–108. [26] D. B. West, Introduction to graph theory, Prentic-Hall, Upper Saddle River, NJ. 1996. | ||
آمار تعداد مشاهده مقاله: 111 تعداد دریافت فایل اصل مقاله: 114 |