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Abstract. The distance d(u,v) between vertices u and v of a simple connected graph G is equal
to the number of edges in a minimal path connecting them. The transmission of a vertex v is de-
fined by σ(v) = ∑

u∈V(G)
d(v,u). A graph invariant (topological index) is said to be a transmission-based

topological index (TT index) if it includes the transmissions σ(u) of vertices of G. Because σ(u) can be
derived from the distance matrix of G, it follows that transmission-based topological indices form a
subset of distance-based topological indices. In this article we survey some results on the computation
of some transmission-based graph invariants of intersection graph, hypercube graph, Kneser graph,
Paley graph and unitary Cayley graph.
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1 Introduction

Let G be a simple connected graph with the finite vertex set V(G) and the edge set E(G),
and denote by n = |V(G)| and m = |E(G)| the number of vertices and edges, respectively.
Using the standard terminology in graph theory, we refer the reader to [26]. The degree d(u)
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of the vertex u ∈ V(G) is the number of the edges incident to u. A simple connected graph G
is called vertex-degree regular if d(u) = d(v) for any vertex u and v of G. The edge of the graph
G connecting the vertices u and v is denoted by uv.

The distance between the vertices u and v in graph G is denoted by d(u,v) and it is defined
as the number of edges in a minimal path connecting them. The eccentricity ε(v) of a vertex
v is the maximum distance from v to any other vertex. A simple connected graph G is called
self-center if ε(u) = ε(v) for any vertex u and v of G. The diameter diam(G) of G is the maxi-
mum eccentricity among the vertices of G. The transmission (or status, or (total) distance) of a
vertex v of G is defined as σ(v) = σG(v) = ∑

u∈V(G)
d(v,u). A graph G is said to be transmission

regular [1] if σ(u) = σ(v) for any vertex u and v of G. A transmission regular graph G is called
k-transmission regular if there exists a positive integer k, for which σ(v) = k for any vertex v of
G.

The role of molecular descriptors (especially topological descriptors) is remarkable in
mathematical chemistry especially in QSPR/QSAR investigations. A topological index is
said to be a transmission-based topological index (TT index) if it includes the transmissions
σ(u) of vertices of G. Because σ(u) can be derived from the distance matrix of G, it follows
that transmission-based topological indices form a subset of distance-based topological in-
dices. Now let us introduce some of them. The oldest and most famous one is the Wiener
index, W(G), represented in [16] as

W(G) =
1
2 ∑

u∈VG)
∑

v∈V(G)

d(u,v) =
1
2 ∑

u∈VG)

σ(u).

The variable transmission Zagreb index MSλ(G), introduced in [19] as

MSλ(G) = ∑
u∈V(G)

σ(u)2λ,

where λ is a real number. The transmission variance VarTr(G), introduced in [19] as

VarTr(G) =
1
n ∑

u∈V(G)

(
σG(u)−

2W(G)

n

)2
=

1
n ∑

u∈V(G)

σG(u)2 − 4W(G)2

n2 (1)

=
MS1(G)

n
− 4W(G)2

n2 ≥ 0,

where
2W(G)

n
is the average vertex transmission of G.

Many transmission-based topological indices can be represented in the form:

TI = ∑
uv∈E(G)

F (σ(u),σ(v)), (2)

where F is a real non-negative symmetric function, i.e., F (x,y) =F (y, x), defined on a carte-
sian product D × D, where D = {σ(v1), . . . ,σ(vn)}. Here we list some particular cases ob-
tained from (2) by appropriate choice of function F (x,y) that are of interest for the present
paper.
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1. For F (x,y) = x+ y, we get the first transmission Zagreb index MS1(G), introduced in [21]
as

MS1(G) = ∑
uv∈E(G)

σ(u) + σ(v) = ∑
u∈V(G)

d(u)σ(u).

2. For F (x,y) = xy, we get the second transmission Zagreb index MS2(G), introduced in [21]
as

MS2(G) = ∑
uv∈E(G)

σ(u)σ(v).

3. For F (x,y) = 1√
xy , we get the transmission Randić index RS(G), introduced in [19] as

RS(G) = ∑
uv∈E(G)

1√
σ(u)σ(v)

.

4. For F (x,y) = 1√
x+y , we get the transmission ordinary sum-connectivity index XS(G), in-

troduced in [19] as

XS(G) = ∑
uv∈E(G)

1√
σ(u) + σ(v)

.

5. For F (x,y) = 2
x+y , we get the transmission ordinary sum-connectivity index XS(G), intro-

duced in [19] as

HS(G) = ∑
uv∈E(G)

2
σ(u) + σ(v)

.

6. For F (x,y) = 2
√

xy
x+y , we get the transmission geometric-arithmetic index GAS(G), intro-

duced in [19] as

GAS(G) =
n

2m ∑
uv∈E(G)

2
√

σ(u)σ(v)
σ(u) + σ(v)

.

7. For F (x,y) = x2λ−1 + y2λ−1, where λ is an arbitrary real number, the variable degree
transmission Zagreb index MSDλ(G), introduced in [19] as

MSDλ(G) = ∑
uv∈E(G)

σ(u)2λ−1 + σ(v)2λ−1 = ∑
u∈V(G)

d(u)σ(u)2λ−1.

8. For F (x,y) = |x − y|, the transmission irregularity irrTr(G) , introduced in [19] as

irrTr(G) = ∑
uv∈E(G)

|σG(u)− σG(v)|. (3)

The Balaban index J(G) and the sum-Balaban index SJ(G) represent a particular class of
transmission-based topological indices. They are defined as [3–5, 7],
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J(G) =
m

m − n + 2 ∑
uv∈E(G)

1√
σ(u)σ(v)

=
m

m − n + 2
RS(G),

SJ(G) =
m

m − n + 2 ∑
uv∈E(G)

1√
σ(u) + σ(v)

=
m

m − n + 2
XS(G).

If ω is a vertex weight of graph G, then one can see that

∑
{u,v}⊆V(G)

(ω(u) + ω(v))d(u,v) = ∑
v∈V(G)

ω(v)σ(v). (4)

The eccentric distance sum of a graph G, denoted by ξd(G), defined as [13]

ξd(G) = ∑
u∈V(G)

ε(u)σ(u).

It follows from Eq. (4) that

ξd(G) = ∑
{u,v}⊆V(G)

(ε(u) + ε(v))d(u,v) = ∑
v∈V(G)

ε(v)σ(v). (5)

Note that MS1(G) coincides with the degree distance DD(G) that was introduced in [8, 14],
and [24]. In fact by Eq. (4),

DD(G) = ∑
{u,v}⊆V(G)

(d(u) + d(v))d(u,v) = ∑
v∈V(G)

d(v)σ(v) = MS1(G). (6)

Consequently, if G is a k-transmission regular graph with m vertices, then

DD(G) = MS1(G) = 2mk.

In this article we aim to survey the method which applies group theory to graph the-
ory. This method is applied to calculate transmissions-based graph invariants of intersection
graph, hypercube graph, Kneser graph, unitary Cayley graph and Paley graph.

2 The method

Let Γ be a group acting on a set X. We shall denote the action of α ∈ Γ on x ∈ X by xα.
Then U ⊆ X is call an orbit of Γ on X if for every x,y ∈ U there exists α ∈ Γ such that xα = y.
The action of group Γ on X is called transitive if X is itself an orbit of Γ on X.

Let G be a graph. A bijection α on V(G) is called an automorphism of G if it preserves E(G).
In other words, α is an automorphism if for each u,v ∈ V(G), e = uv ∈ E(G) if and only if
uαvα ∈ E(G). Let us denote by Aut(G) the set of all automorphisms of G.

It is known that Aut(G) forms a group under the composition of mappings. This is a
subgroup of the symmetric group on V(G). Note that Aut(G) acts on V(G) naturally, i.e.,
for each α ∈ Aut(G) and v ∈ V(G) the action of α on v, vα, is defined as α(v). The action of
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Aut(G) on V(G) induces an action on E(G). In fact, for α ∈ Aut(G) and e = uv ∈ E(G), the
action of α on e = uv, eα, is defined as uαvα.

A graph G is called vertex-transitive (edge-transitive) if the action of Aut(G) on V(G) (E(G))
is transitive. Let G be a graph, V1,V2, . . . ,Vt be the orbits of Aut(G) under its natural action
on V(G). Then for each 1 ≤ i ≤ t and for u,v ∈ Vi,

σ(u) = σ(v), ε(u) = ε(v), d(u) = d(v).

In particular, if G is vertex-transitive (i.e., t = 1), then for each u,v ∈ V(G),

σ(u) = σ(v), ε(u) = ε(v), d(u) = d(v).

In fact, vertex-transitive graphs are transmission regular, self-center and vertex-degree regu-
lar [9, 12], but note vice versa, see Figure 1.

Figure 1. A transmission regular graph but not vertex-degree regular graph with the smallest order

Example 2.1. Consider the graph Γ depicted in Figure 2. The orbits of Aut(G) on V(G) are

V1 = {x}, V2 = {y,z}, V3 = {u,v,w, h}.

The orbits of Aut(G) on E(G) are

E1 = {xy, xz}, E2 = {yu,yv,zw,zh}.

By a simple calculation, we have

σ(x) = 10, σ(y) = σ(z) = 11, σ(u) = σ(v) = σ(w) = σ(h) = 16.

ε(x) = 2, ε(y) = ε(z) = 3, ε(u) = ε(v) = ε(w) = ε(h) = 4.

Figure 2. The graph Γ in Example 2.1
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Let G be a group with identity 1. For S ⊂ G , 1 /∈ S and S−1 := {s−1 | s ∈ S} = S the
Cayley graph Γ = Cay(G,S) is the undirected graph having vertex set V(Γ) = G and edge
set E(Γ) = {{a,b}|ab−1 ∈ S}. The Cayley graph Γ is vertex-degree regular of degree |S|. Its
connected components are the right cosets of the subgroup generated by S. So Γ is connected,
if S generates G. Every Cayley graph is vertex-transitive but the converse is not true. The
Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is
not a Cayley graph. More information about Cayley graphs can be found in the books on
algebraic graph theory by Biggs [6].

Theorem 2.2. [18] Let Γ be a graph. Then Γ ∼= Cay(G,S) for some group G and S ⊆ G if and only
if Aut(Γ) has a regular subgroup isomorphic to G.

In this article the following results are frequently used:

Lemma 2.3. Let G be a connected k-transmission regular graph with m edges. Then MS1(G) = 2mk
and MS2(G) = mk2.

Theorem 2.4. [2] Let G be a connected graph on n vertices with the automorphism group Aut(G)

and the vertex set V(G). Let V1,V2, · · · ,Vt be all orbits of the action Aut(G) on V(G). Suppose that
for each 1 ≤ i ≤ t, ki are the transmission of vertices in the orbit Vi, respectively. Then

W(G) =
1
2

t

∑
i=1

|Vi|ki.

Specially if G is vertex-transitive (i.e., t = 1), then W(G) = 1
2 nk, where k is the transmission of each

vertex of G respectively.

The following result holds by the same idea of that of Theorem 2.4:

Theorem 2.5. [25] Let G be a connected graph on n vertices with the automorphism group Aut(G)

and the vertex set V(G). Let V1,V2, · · · ,Vt be all orbits of the action of Aut(G) on V(G). Suppose
that for each 1 ≤ i ≤ t, di and ki are, respectively, the vertex-degree and the transmission of vertices
in the orbit Vi. Then

MS1(G) =
t

∑
i=1

|Vi|diki.

Specially if G is vertex-transitive (i.e., t = 1), then

MS1(G) = ndk, MS2(G) =
1
2

ndk2,

where d and k are the vertex-degree and the transmission of each vertex of G, respectively.

Lemma 2.6. [19] Let G be a connected vertex-transitive graph with n vertices and m edges and the
with the vertex-degree r. Then

SJ(G) =
m2√n

2(m − n + 2)
√

W(G)
, GAS(G) =

2W(G)

n
,

138



Sharafdini et al. / Journal of Discrete Mathematics and Its Applications 9 (2024) 133–145

HS(G) =
nm

2W(G)
=

n2r
4W(G)

,

J(G) =
m2n

2(m − n + 2)W(G)
=

mn2r
4(m − n + 2)W(G)

.

Theorem 2.7. [19] Let G be a connected graph with n vertices and m edges. Let us denote the orbits
of the action of Aut(G) on E(G) by E1, E2, . . . , El. Suppose that for each 1 ≤ i ≤ l, ei = uivi is a fixed
edge in the orbit Ei. Then

HS(G) =
l

∑
i=1

2|Ei|
σ(ui) + σ(vi)

, SJ(G) =
m

m − n + 2

l

∑
i=1

|Ei|√
σ(ui) + σ(vi)

,

GAS(G) =
n

2m

l

∑
i=1

|Ei|
√

σ(ui)σ(vi)

σ(ui) + σ(vi)
, irrTr(G) =

l

∑
i=1

|Ei| |σ(ui)− σ(vi)| ,

MS1(G) =
l

∑
i=1

|Ei|(σ(ui) + σ(vi)), MS2(G) =
l

∑
i=1

|Ei|σ(ui)σ(vi).

Example 2.8. Let us apply Theorem 2.7 to calculate some transmission-based topological indices of
the graph Γ considered in Example 2.1.

HS(G) =
4

21
+

8
27

, SJ(G) = 6
(

2√
21

+
4√
27

)
,

GAS(G) =
7

12

(
2
√

10 × 11
21

+
4
√

11 × 16
27

)
, irrTr(G) = 2 × |10 − 11|+ 4 × |11 − 16| ,

MS1(G) = 2 (10 + 11) + 4 (11 + 16) , MS2(G) = 2 (10 × 11) + 4 (11 × 16) .

3 Main results

In this section we will consider a few families of graphs and find their transmission-based
indices using the results mentioned in Section 2.

Following [15] we recall intersection graphs as follows. Let S be a set and F = {S1, . . . ,Sq}
be a non-empty family of distinct non-empty subsets of S such that S =

⋃q
i=1 Si. The intersec-

tion graph of S which is denoted by Ω(F ) has F as its set of vertices and two distinct vertices
Si, Sj , i ̸= j , are adjacent if and only if Si

⋂
Sj ̸= ∅. Here we will consider a set S of cardinality

p and let F be the set of all subsets of S of cardinality t, 1 < t < p, which is denoted by S{t}.
Upon convenience we may set S = {1,2, . . . , p}. Let us denote the intersection graph Ω(S{t})
by Γ{t}

p = (V, E). The number of vertices of this graph is (p
t), the degree d of each vertex is as

follows:

d =

{
(p

t)− (p−t
t )− 1 p ≥ 2t;

(p
t)− 1 p < 2t.
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The number of its edges is as follows:

|E| =


1
2(

p
t)((

p
t)− (p−t

t )− 1) p ≥ 2t;

1
2(

p
t)((

p
t)− 1) p < 2t.

Lemma 3.1. [9] The following hold for the intersection graph Γ{k}
p :

1. The automorphism group of Γ{k}
p has a subgroup isomorphic to the symmetric group on n letters.

2. For p ≥ 2k, the automorphism group of Γ{k}
p has k − 1 orbits on the set E of edges of Γ{k}

p . If

p < 2k, then Aut
(

Γ{k}
p

)
has n − k orbits on E

(
Γ{k}

p

)
.

Lemma 3.2. [9] The intersection graph Γ{t}
p is vertex-transitive and for any t-element subset A of S

we have

σ
Γ{t}

p
(A) =

{
(p

t) + (p−t
t )− 1 p ≥ 2t;

(p
t)− 1 p < 2t.

Moreover,

W(Γ{t}
p ) =


1
2(

p
t)
(
(p

t) + (p−t
t )− 1

)
p ≥ 2t;

1
2(

p
t)
(
(p

t)− 1
)

p < 2t.

As a direct consequence of Theorem 2.5 and Lemma 3.2, we have the following:

Theorem 3.3. [25]

MS1(Γ
{t}
p ) =


(p

t)
(
(p

t)− (p−t
t )− 1

)(
(p

t) + (p−t
t )− 1

)
p ≥ 2t;

(p
t)
(
(p

t)− 1
)2

p < 2t.

MS2(Γ
{t}
p ) =


1
2(

p
t)
(
(p

t)− (p−t
t )− 1

)(
(p

t) + (p−t
t )− 1

)2
p ≥ 2t;

1
2(

p
t)
(
(p

t)− 1
)3

p < 2t.

The vertex set of the hypercube Hn consists of all n-tuples (b1,b2, · · · ,bn) with bi ∈ {0,1}.
Two vertices are adjacent if the corresponding tuples differ in precisely one place. Moreover,
Hn has exactly 2n vertices and n2n−1 edges. Darafsheh [9] proved that Hn is vertex-transitive
and for every vertex u, σHn(u) = n2n−1.

Lemma 3.4. [9] The automorphism group of Hn is isomorphic to a group of the shape 2n : Sn. In
particular Hn is both vertex-transitive and edge-transitive.

Theorem 3.5. [9] The Wiener index of Hn is equal to W (Hn) = 22(n−1)n.
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It follows from Lemma 2.3 and Lemma 3.4 that

Theorem 3.6. [25] For hypercube Hn,

MS1(Hn) = n222n−1 and MS2(Hn) = n323n−3. (7)

Corollary 3.7. [19]

SJ(Hn) =
n222(n−1)

(n2n−1 − 2n + 2)
√

n2n
, GAS(Hn) = n, HS(Hn) = 2n222(n−1),

J(Hn) =
n222(n−1)

(n2n−1 − 2n + 2)n2n−1 .

The Kneser graph KGp,k is the graph whose vertices correspond to the k-element subsets of
a set of p elements, and where two vertices are adjacent if and only if the two corresponding
sets are disjoint. Clearly we must impose the restriction p ≥ 2k. The Kneser graph KGp,k

has (p
k) vertices and it is regular of degree (p−k

k ). Therefore the number of edges of KGp,k is
1
2(

p
k)(

p−k
k ) (see [10]). The Kneser graph KGn,1 is the complete graph on n vertices. The Kneser

graph KG2p−1,p−1 is known as the odd graph Op. The odd graph O3 = KG5,2 is isomorphic to
the Petersen graph, see Figure 3.

v5

v4

v3

v2 v1

(a) G

v5v3

v2 v1

(b) H1

{4, 5}

{1, 2}

{3, 4}

{2, 5} {1, 2}

{2, 3}

{3, 5}

{1, 5}

{1, 4} {2, 4}

v5v3

v2 v1

2

Figure 3. The odd graph O3 = KG5,2 is isomorphic to the Petersen graph

Theorem 3.8. [10] The automorphism group of the Kneser graph KGp,k contains a subgroup isomor-
phic to the symmetric group on p letters.

Vertex and edge transitivity of the Kneser graph are obtained from Theorem 3.8 and The-
orem 2.2.

Lemma 3.9. [10] The Kneser graph is both vertex-transitive and edge-transitive.

It is proved that KGp,k is connected if p ≥ 2k + 1, where k ≥ 2, (see [10, Corollary 3.5.]).

Lemma 3.10. [10] Let k ≥ 2 and n ≥ 2k + 2. Then for each k-subset A,

1. If p ≥ 3k − 1, then we have

σ(A) =

((
p − k

k

)
+ 2

((
p
k

)
− 1 −

(
p − k

k

)))
.
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2. If p < 3k − 1, then we have

σ(A) =

((
p − k

k

)
+ 2α + 3β

)
,

where

α =
p−2k

∑
j=1

(
k

k − j

)(
p − 2k

j

)
,

β =

((
p
k

)
− 1 −

(
p − k

k

)
−

p−2k

∑
j=1

(
k

k − j

)(
p − 2k

j

))
.

It follows from Lemma 3.9 and Theorem 2.4 that

W(KGp,k) =
1
2

(
p
k

)
σ(A),

where A is an arbitrary k-subset. Hence by Lemma 3.10 we have:

Theorem 3.11. [10] Let k ≥ 2 and n ≥ 2k + 2. Then

1. If p ≥ 3k − 1, then we have

W
(
KGp,k

)
=

1
2

(
p
k

)((
p − k

k

)
+ 2

((
p
k

)
− 1 −

(
p − k

k

)))
.

2. If p < 3k − 1, then we have

W(KGp,k) =
1
2

(
p
k

)((
p − k

k

)
+ 2α + 3β

)
,

where

α =
p−2k

∑
j=1

(
k

k − j

)(
p − 2k

j

)
,

β =

((
p
k

)
− 1 −

(
p − k

k

)
−

p−2k

∑
j=1

(
k

k − j

)(
p − 2k

j

))
.

The next proposition follows from Theorem 2.5 and Lemma 3.9.

Proposition 3.12. [25] For the Kneser graph KGp,k, we have

MS1(KGp,k) = 2W(KGp,k)

(
p − k

k

)
,

and

MS2(KGp,k) =

(
p − k

k

)[2(W(KGp,k))
2

(p
k)

]
.
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Let Fq denote the field with q elements, where q ≡ 1(mod4). The Paley graph P(q) has
Fq as the set of its vertices and two vertices x and y are joined by an edge if and only if x − y
is a non-zero square in Fq. If we put S =

{
a2 | 0 ̸= a ∈ Fq

}
, then clearly P(q) is the Cayley

graph of the additive group of Fq with S as the connecting set. The condition q ≡ 1(mod4)
implies that −1 ∈ Fq, hence S =−S and P(q) is an undirected graph. Because S generates Fq

we deduce that P(q) is a connected graph. P(q) is a regular graph of degree q−1
2 , hence the

number of edges in P(q) is q(q−1)
4 .

We refer the reader to [17] for the automorphism group of P(q). By construction of P(q),
the graph P(q) has the following automorphisms: translation by an element of Fq, multipli-
cation by an element of S, and by applying any field automorphism of Fq. For q odd these
operations generate the group

A∆L1(q) =
{

v 7→ avγ + b | a ∈ S,b ∈ Fq,γ ∈ Aut
(
Fq
)}

.

Therefore Aut(P(q)) has a subgroup isomorphic to A∆L1(q). In fact from [17], it follows that:

Lemma 3.13. [17] If q ≡ 1(mod4) then Aut(P(q)) ∼= A∆L1(q).

From above it is easily verified that the Paley graph is both vertex and edge transitive
graph. It is know that P(q) is of diameter 2, and hence it is (2(q − 1) − q−1

2 )-transmission
regular graph. Hence by Theorem 2.4 the following hold:

Theorem 3.14. [23] For Paley graph P(q), σ(0) = 3
2(q − 1). Consequently,

W(P(q)) =
3q
4
(q − 1).

By Theorem 2.5 we obtain that

Theorem 3.15. For Paley graph P(q),

MS1(P(q)) =
3
4

q(q − 1)2, MS2(P(q)) =
9

16
q(q − 1)3.

The Dihedral group D2n is the symmetry group of an n-sided regular polygonal which
it has the following presentation D2n =

〈
a,b | a2 = bn = 1, (ab)2 = 1

〉
. Considering subset

S1 =
{

a, ab,bn−1,b
}

of D2n, the Cayley graph Cay (D2n,S1) is defined.
For some integer n ≥ 3, the generalized Quaternion Q2n is a non-abelian group of order 2n

with the presentation Q2n =
〈

a,b | a2n−1
= 1, a2n−2

= b2,b−1ab = a−1〉. The ordinary Quaternion

group corresponds to the case n = 3. Now, we regard the subset S2 =
{

a, a2n−1−1,b, a2n−2
}

of
Q2n and define the Cayley graph Cay (Q2n ,S2).

It is obvious that S1 = S−1
1 and S2 = S−1

2 , and also S1 and S2 are generating sets of groups
D2n and Q2n , respectively. So the Cayley graphs Cay (D2n,S1) and Cay (Q2n ,S2) are both
undirected connected graphs.

Proposition 3.16. [20] The following hold:
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1. For the Cayley graph Γ1 = Cay (D2n,S1), σΓ1(1) =
n
2 (n + 1). Consequently,

W(Γ1) =
1
2

n2(n + 1).

2. For the Cayley graph Γ = Cay (Q2n,S2), σΓ2(1) = 2n (2n−4 + 1
)
− 2. Consequently,

W(Γ2) = 2n−1
(

2n
(

2n−4 + 1
)
− 2
)

.

Let R be a finite commutative ring. Let us denoted by GR =Cay(R, R×) the unitary Cayley
graph of R which is a graph with vertex set R and edge set{

{a,b} | a,b ∈ R, a − b ∈ R×} ,

where R× is the set of units of R. For a positive integer n > 1 the unitary Cayley graph
Xn = Cay(Zn,Un) is defined by the additive group of the ring Zn of integers modulo n and
the multiplicative group Un of its units. If we represent the elements of Zn by the integers
0,1, · · · ,n − 1, then it is well known that

Un = {a ∈ Zn | gcd(a,n) = 1}.

So Xn, has the vertex set V(Xn) = Zn = {0,1, · · · ,n− 1} and ab ∈ E(Xn) if and only if gcd(a−
b,n) = 1. The graph Xn is regular of degree |Un| = ϕ(n), where ϕ(n) denotes the Euler
function. If n = p is a prime number, then Xn = Kp is the complete graph on p vertices. If
n = pt is a prime power then Xn is a complete p-partite graph.

Lemma 3.17. [22] The Wiener index of unitary Cayley graph Xn is as follows:

W(Xn) =


1
2 n(n − 1) if n is a prim number,
3
4 n2 − n if n = 2α,α > 1,

n2 − 1
2 nϕ(n)− n if n is odd but not a prime number,

5
4 n2 − nϕ(n)− n if n is even and has and odd prime divisor.
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