تعداد نشریات | 11 |
تعداد شمارهها | 212 |
تعداد مقالات | 2,114 |
تعداد مشاهده مقاله | 2,905,018 |
تعداد دریافت فایل اصل مقاله | 2,120,967 |
Orbit entropy versus the symmetry index | ||
Journal of Discrete Mathematics and Its Applications | ||
دوره 9، شماره 2، شهریور 2024، صفحه 123-131 اصل مقاله (778.33 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2024.11131.1074 | ||
نویسندگان | ||
Matthias Dehmer1؛ Maryam Jalali-Rad* 2 | ||
1Swiss Distance University of Applied Sciences, UMIT, Hall, Tyrol, Austria, Nankai University | ||
2Department of pure math, University of Kashan | ||
تاریخ دریافت: 13 فروردین 1403، تاریخ بازنگری: 27 فروردین 1403، تاریخ پذیرش: 28 اردیبهشت 1403 | ||
چکیده | ||
The aim of this paper is to compute the novel counting polynomial, orbit polynomial, the symmetry index and the orbit-entropy of several classes of networkThe aim of this paper is to compute the novel counting polynomial, orbit polynomial, the symmetry index and the orbit-entropy of several classes of network | ||
کلیدواژهها | ||
counting polynomial؛ orbit polynomial؛ symmetry index؛ orbit-entropy | ||
مراجع | ||
[1] K. Balasubramanian, Computer perception of NMR symmetrys, J. Magnet. Reson. 112 (1995) 182– 190. [2] K. Balasubramanian, Generators of the character tables of generalized wreath product groups, Theor. Chim. Acta. 78 (1990) 31–43. [3] K. Balasubramanian, Symmetry operators of generalized wreath products and their applications to chemical physics, Int. J. Quantum Chem. 22 (1982) 1013–1031. [4] K. Balasubramanian, The symmetry groups of nonrigid molecules as generalized wreath products and their representations, J. Chem. Phys. 72 (1980) 665–677. [5] A. Barrat, M. Weigt, On the properties of small-world graphs, Eur. Phys. J. B. 13 (2000) 547–560. [6] M. Dehmer, Z. Chen, F. Emmert-Streib, A. Mowshowitz, Y. Shi, Sh. Tripathi, Y. Zhang, Towards detecting structural branching and cyclicity in graphs: A polynomial-based approach, Inf. Sci. 471 ( 2019) 19–28. [7] M. Dehmer, F. Emmert-Streib, Y. Shi, Interrelations of graph distance measures based on topological indices, PLoS One 9 (2014) e94985. [8] M. Dehmer, A. Mehler, A new method of measuring similarity for a special class of directed graphs, Tatra Mt. Math. Publ. 36 (2007) 39–59. [9] M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inf. Sci. 181 (2011) 57–78. [10] M. Dehmer, A. Mowshowitz, Generalized graph entropies, Complexity, 17 (2011) 45–50. [11] M. Dehmer, A. Mowshowitz, F. Emmert-Streib, Connections between classical and parametric graph entropies, PLoS One. 6 (2011) e15733. [12] M. Dehmer, Y. Shi, F. Emmert-Streib, Graph distance measures based on topological indices revisited, Appl. Math. Comput. 266 (2015) 623–633. [13] M. Dehmer, Y. Shi, F. Emmert-Streib, Interrelations of graph distance measures based on topological indices, PLoS One. 9 (2014) e94985. [14] M. Dehmer, Y. Shi, F. Emmert-Streib, Structural differentiation of graphs using Hosoya-based indices, PLoS One. 9 (2014) e102459. [15] M. Dehmer, L. Sivakumar, K. Varmuza, Uniquely discriminating molecular structures using novel eigenvalue-based descriptors, MATCH Commun. Math. Comput. Chem. 67 (2012) 147–172. [16] M. Dehmer, K. Varmuza, S. Borgert, F. Emmert-Streib, On entropy based molecular descriptors: Statistical analysis of real and synthetic chemical structures, J. Chem. Inf. Model. 49 (2009) 1655– 1663. [17] J. D. Dixon, B. Mortimer, Permutation Groups. New York, NY, USA, Springer-Verlag, 1996. [18] T. Dosli ˇ c, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y. ´ 48 (2005) 47–55. [19] P. Erdos and v. R ¨ enyi, On Random Graphs. I, Publicationes Mathematicae, vol. 6, pp. 290–297, ´ 1959. [20] M. Ghorbani, M. Dehmer, S. Zangi, Graph operations based on using distance-based graph entropies, Appl. Math. Comput. 333 (2018) 547–555. [21] M. Ghorbani, M. Dehmer, F. Emmert-Streib, On the degeneracy of the orbit polynomial and related graph polynomials, Symmetry 12 (2020) 1643. https://doi.org/10.3390/sym12101643. [22] M. Ghorbani, M. Jalali-Rad, M. Dehmer, Orbit polynomial of graphs versus polynomial with integer coefficients, Symmetry 13 (2021) 710. [23] M. Girvan, M. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA. 99 (2002) 7821–7826. [24] R. Guimera, S. Mossa, A. Turtschi, L. A. N. Amaral, The worldwide air transportation network: Anomalous centrality, community structure, and cities global roles, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 7794–7799. [25] F. Harary, Graph Theory, Boston, MA, USA, Addison-Wesley Publishing Company, 1969. [26] M. D. Humphries, K. Gurney, Graph small-world-ness: A quantitative method for determining canonical graph equivalence, PLoS One. 3 (2008) e0002051. [27] A. Kirman, The economy as an evolving network, Journal of Evolutionary Economics 7 (1997) 339–353. [28] B. D. MacArthur, R. J. Sanches-Garcia, J. W. Anderson, Symmetry in complex graphs, Discret. Appl. Math. 156 (2008) 3525–3531. [29] J. M. Montoya and R. V. Sole, Small world patterns in food webs, Journal of Theor. Biol. 214 (2002) ´ 405–412. [30] A. Mowshowitz, M. Dehmer, A symmetry index for graphs, Symmetry Cult. Sci. 21 (2010) 321–327. [31] A. Mowshowitz, Entropy and the complexity of the graphs: I. An index of the relative complexity of a graph, Bull. Math. Biophys. 30 (1968) 175–204. [32] A. Mowshowitz, Entropy and the complexity of graphs II: The information content of digraphs and infinite graphs, Bull. Math. Biophys. 30 (1968) 225–240. [33] A. Mowshowitz, Entropy and the complexity of graphs III: Graphs with prescribed information content, Bull. Math. Biophys. 30 (1968) 387–414. [34] A. Mowshowitz, Entropy and the complexity of graphs IV: Entropy measures and graphical structure, Bull. Math. Biophys. 30 (1968) 533–546. [35] M. E. Newman, S. H. Strogatz, D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E. 64 (2001) 026118. [36] M. E. Newman, C. Moore, D. J. Watts, Mean-field solution of the small-world graph model, Phys. Rev. Lett. 84 (2000) 3201–3204. [37] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scalefree networks, Phys. Rev. Lett. 86 (2001) 3200–3203. [38] R Core Team, Vienna, Austria. 2013.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. [Online]. Available: http://www.R-project.org [39] N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys. 17 (1955) 229–235. [40] C. Rozenblat, G. Melancon, P.-Y. Koenig, Continental integration in multilevel approach of world air transportation (2000-2004). Networks and Spatial Economics, 2008. [41] J. P. Scott, Social Network Analysis: A Handbook, SAGE Publications, 2000. [42] H. Tan, M. Z. Liao, K. Balasubramanian, A flexible correlation group table (CGT) method for the relativistic configuration wave functions, J. Math. Chem. 28 (2000) 213–239. [43] E. Trucco, A note on the information content of graphs, Bull. Math. Biophys. 18 (1956) 129–135. [44] D. J. Watts, S. H. Strogatz, Dynamics of small-world graphs, Nature 39 (1998) 440–442. [45] S. Wasserman, K. Faust. Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994. | ||
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 134 |