Journal of Electrical and Computer Engineering Innovations (JECEI)
دوره 12، شماره 2 ، مهر 2024، صفحه 535-556 اصل مقاله (3.25 M )
نوع مقاله: Original Research Paper
شناسه دیجیتال (DOI): 10.22061/jecei.2024.10831.740
نویسندگان
E. Pira* ؛ Alireza Rouhi
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
تاریخ دریافت : 26 فروردین 1403 ،
تاریخ بازنگری : 28 تیر 1403 ،
تاریخ پذیرش : 07 مرداد 1403
چکیده
Background and Objectives: The development of effective meta-heuristic algorithms is crucial for solving complex optimization problems. This paper introduces the Society Deciling Process (SDP), a novel socio-inspired meta-heuristic algorithm that simulates the social categorization into deciles based on metrics such as income, occupation, and education. The objective of this research is to introduce the SDP algorithm and evaluate its performance in terms of convergence speed and hit rate, comparing it with seven well-established meta-heuristic algorithms to highlight its potential in optimization tasks.Methods: The SDP algorithm's efficacy was evaluated using a comprehensive set of 14 general test functions, including benchmarks from the CEC 2019 and CEC 2022 competitions. The performance of SDP was compared against seven established meta-heuristic algorithms: Artificial Hummingbird Algorithm (AHA), Dwarf Mongoose Optimization algorithm (DMO), Reptile Search Algorithm (RSA), Snake Optimizer (SO), Prairie Dog Optimization (PDO), Fick’s Law Optimization (FLA), and Gazelle Optimization Algorithm (GOA). Statistical analysis was conducted using Friedman's rank and Wilcoxon signed-rank tests to assess the relative performance in terms of exploration, exploitation capabilities, and proximity to the optimum solution.Results: The results demonstrated that the SDP algorithm outperforms its counterparts in terms of convergence speed and hit rate across the selected test functions. In statistical tests, SDP showed significantly better performance in exploration and exploitation, leading to a higher proximity to the optimum solution compared to the other algorithms. Furthermore, when applied to five complex engineering design problems, the SDP algorithm exhibited superior performance, outmatching the state-of-the-art algorithms in terms of effectiveness and efficiency.Conclusion: The Society Deciling Process (SDP) algorithm introduces a novel and effective approach to optimization, inspired by societal structure dynamics. Its superior performance in convergence speed, exploration and exploitation capabilities, and application to complex engineering problems establishes SDP as a promising meta-heuristic algorithm. This research not only demonstrates the potential of socio-inspired algorithms in optimization tasks but also opens avenues for further enhancements in meta-heuristic algorithm designs.
کلیدواژهها
Meta-heuristic ؛ Test function ؛ CEC 2019 ؛ CEC 2022 ؛ Convergence speed
مراجع
[1] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, W. Al-Atabany, "Honey badger algorithm: New metaheuristic algorithm for solving optimization problems," Math. Comput. Simul., 192: 84-110, 2022.
[2] E. Pira, "City councils evolution: a socio-inspired metaheuristic optimization algorithm," J. Ambient Intell. Hum. Comput., 14(9): 12207-12256, 2023.
[3] W. Zhao, L. Wang, S. Mirjalili, "Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications," Comput. Methods Appl. Mech. Eng., 388: 114194, 2022.
[4] M. Abdel-Basset, L. Abdel-Fatah, A. K. Sangaiah, "Metaheuristic algorithms: A comprehensive review," Comput. Intell. multimedia Big Data Cloud Eng. Appl., 2018: 185-231, 2018.
[5] I. Boussaïd, J. Lepagnot, P. Siarry, "A survey on optimization metaheuristics," Inf. Sci., 237: 82-117, 2013.
[6] J. H. Holland, "Genetic algorithms," Sci. Am., 267(1): 66-73, 1992.
[7] J. R. Koza, "Evolution of subsumption using genetic programming," in Proc. the First European Conference on Artificial Life: 110-119, 1992.
[8] T. M. Shami, D. Grace, A. Burr, P. D. Mitchell, "Single candidate optimizer: a novel optimization algorithm," Evol. Intell., 17(2): 863-887, 2024.
[9] P. D. Kusuma, F. C. Hasibuan, "Attack-Leave optimizer: A new metaheuristic that focuses on the guided search and performs random search as alternative," Int. J. Intell. Eng. Syst., 16(3), 2023.
[10] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, "Optimization by simulated annealing," science, 220(4598): 671-680, 1983.
[11] M. Azizi, U. Aickelin, H. A. Khorshidi, M. Baghalzadeh Shishehgarkhaneh, "Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization," Sci. Rep., 13(1): 226, 2023.
[12] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, "Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems," Comput. Struct., 110: 151-166, 2012.
[13] M. Abdel-Basset, R. Mohamed, M. Jameel, M. Abouhawwash, "Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems," Knowledge-Based Syst., 262: 110248, 2023.
[14] M. Kaveh, M. S. Mesgari, B. Saeidian, "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Math. Comput. Simul., 208: 95-135, 2023.
[15] P. D. Kusuma, F. C. Hasibuan, "Swarm magnetic optimizer: A new optimizer that adopts magnetic behaviour," Int. J. Intell. Eng. Syst., 16(4), 2023.
[16] B. Nouhi, N. Darabi, P. Sareh, H. Bayazidi, F. Darabi, S. Talatahari, "The fusion–fission optimization (FuFiO) algorithm," Sci. Rep., 12(1): 12396, 2022.
[17] F. A. Hashim, R. R. Mostafa, A. G. Hussien, S. Mirjalili, K. M. Sallam, "Fick’s law algorithm: A physical law-based algorithm for numerical optimization," Knowledge-Based Syst., 260: 110146, 2023.
[18] F. Rezaei, H. R. Safavi, M. Abd Elaziz, S. Mirjalili, "GMO: geometric mean optimizer for solving engineering problems," Soft Comput., 27(15): 10571-10606, 2023.
[19] M. Monemizadeh, S. R. Samareh Hashemi, M. Sheikh-Hosseini, H. Fehri, "A new physics-inspired discriminative classifier," AUT J. Electr. Eng., 2024.
[20] R. Eberhart, J. Kennedy, "A new optimizer using particle swarm theory," in MHS'95. Proc. the sixth International Symposium on Micro Machine And Human Science: 39-43, 1995.
[21] F. A. Hashim, A. G. Hussien, "Snake optimizer: A novel meta-heuristic optimization algorithm," Knowledge-Based Syst., 242: 108320, 2022.
[22] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, "Prairie dog optimization algorithm," Neural Comput. Appl., 34(22): 20017-20065, 2022.
[23] L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. Al-Qaness, A. H. Gandomi, "Aquila optimizer: a novel meta-heuristic optimization algorithm," Comput. Ind. Eng., 157: 107250, 2021.
[24] D. Połap, M. Woźniak, "Red fox optimization algorithm," Expert Syst. Appl., 166: 114107, 2021.
[25] L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, "Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer," Expert Syst. Appl., 191: 116158, 2022.
[26] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, "Gazelle optimization algorithm: A novel nature-inspired metaheuristic optimizer," Neural Comput. Appl., 35: 4099-4131, 2022.
[27] J. Xue, B. Shen, "Dung beetle optimizer: A new meta-heuristic algorithm for global optimization," J. Supercomput., 79(7): 7305-7336, 2023.
[28] H. Mohammed, T. Rashid, "FOX: a FOX-inspired optimization algorithm," Appl. Intell., 53(1): 1030-1050, 2023.
[29] H. T. Sadeeq, A. M. Abdulazeez, "Giant trevally optimizer (GTO): A novel metaheuristic algorithm for global optimization and challenging engineering problems," IEEE Access, 10: 121615-121640, 2022.
[30] B. Abdollahzadeh, F. S. Gharehchopogh, N. Khodadadi, S. Mirjalili, "Mountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems," Adv. Eng. Software, 174: 103282, 2022.
[31] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, "Dwarf mongoose optimization algorithm," Comput. Methods Appl. Mech. Eng., 391: 114570, 2022.
[32] M. H. Amiri, N. Mehrabi Hashjin, M. Montazeri, S. Mirjalili, N. Khodadadi, "Hippopotamus optimization algorithm: A novel nature-inspired optimization algorithm," Sci. Rep., 14(1): 5032, 2024.
[33] J. Bai, H. Nguyen-Xuan, E. Atroshchenko, G. Kosec, L. Wang, M. A. Wahab, "Blood-sucking leech optimizer," Adv. Eng. Software, 195: 103696, 2024.
[34] E. S. M. El-kenawy, N. Khodadadi, S. Mirjalili, A. A. Abdelhamid, M. M. Eid, A. Ibrahim, "Greylag goose optimization: Nature-inspired optimization algorithm," Expert Syst. Appl., 238: 122147, 2024.
[35] G. Hu, Y. Guo, G. Wei, L. Abualigah, "Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization," Adv. Eng. Inf., 58: 102210, 2023.
[36] S. Safiri, A. Nikoofard, "Ladybug Beetle optimization algorithm: Application for real-world problems," J. Supercomput., 79(3): 3511-3560, 2023.
[37] H. Jia, H. Rao, C. Wen, S. Mirjalili, "Crayfish optimization algorithm," Artif. Intell. Rev., 56(Suppl 2): 1919-1979, 2023.
[38] S. Satapathy, A. Naik, "Social group optimization (SGO): A new population evolutionary optimization technique," Complex Intell. Syst., 2(3): 173-203, 2016.
[39] E. Pira, "City councils evolution: a socio-inspired metaheuristic optimization algorithm," J. Ambient Intell. Hum. Comput., 14: 12207-12256, 2022.
[40] R. V. Rao, V. J. Savsani, D. Vakharia, "Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems," Comput.- Aided Des., 43(3): 303-315, 2011.
[41] A. Borji, "A new global optimization algorithm inspired by parliamentary political competitions," in Proc. Mexican International Conference on Artificial Intelligence: 61-71, 2007.
[42] T. T. Huan, A. J. Kulkarni, J. Kanesan, C. J. Huang, A. Abraham, "Ideology algorithm: A socio-inspired optimization methodology," Neural Comput. Appl., 28(1): 845-876, 2017.
[43] V. Sahargahi, V. Majidnezhad, S. T. Afshord, Y. Jafari, "An intelligent chaotic clonal optimizer," Appl. Soft Comput., 115: 108126, 2022.
[44] A. S. Shastri, A. Jagetia, A. Sehgal, M. Patel, A. J. Kulkarni, "Expectation algorithm (ExA): a socio-inspired optimization methodology," in Socio-cultural Inspired Metaheuristics: Springer, pp. 193-214, 2019.
[45] H. Emami, "Seasons optimization algorithm," Eng. Comput., 38: 1845-1865, 2020.
[46] D. H. Wolpert, W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., 1(1): 67-82, 1997.
[47] A. Kaveh, T. Bakhshpoori, "Water evaporation optimization: a novel physically inspired optimization algorithm," Comput. Struct., 167: 69-85, 2016.
[48] M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Ann. Math. Stat., 11(1): 86-92, 1940.
[49] R. F. Woolson, "Wilcoxon signed‐rank test," Wiley Encyclopedia of Clinical Trials: 1-3, 2007.
[50] G. Hu, J. Zhong, B. Du, G. Wei, "An enhanced hybrid arithmetic optimization algorithm for engineering applications," Comput. Methods Appl. Mech. Eng., 394: 114901, 2022.
[51] A. H. Gandomi, X. S. Yang, A. H. Alavi, S. Talatahari, "Bat algorithm for constrained optimization tasks," Neural Comput. Appl., 22: 1239-1255, 2013.
[52] T. Ray, K. M. Liew, "Society and civilization: An optimization algorithm based on the simulation of social behavior," IEEE Trans. Evol. Comput., 7(4): 386-396, 2003.
[53] H. Liu, Z. Cai, Y. Wang, "Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization," Appl. Soft Comput., 10(2): 629-640, 2010.
[54] L. Wang, L. p. Li, "An effective differential evolution with level comparison for constrained engineering design," Struct. Multidiscip. Optim., 41(6): 947-963, 2010.
[55] M. Zhang, W. Luo, X. Wang, "Differential evolution with dynamic stochastic selection for constrained optimization," Inf. Sci., 178(15): 3043-3074, 2008.
[56] Y. Wang, Z. Cai, Y. Zhou, Z. Fan, "Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique," Struct. Multidiscip. Optim., 37(4): 395-413, 2009.
[57] E. Mezura-Montes, C. C. Coello, J. Velázquez-Reyes, "Increasing successful offspring and diversity in differential evolution for engineering design," in Proc. the Seventh international Conference on Adaptive Computing in Design and Manufacture (ACDM 2006): 131-139, 2006.
[58] D. Karaboga, B. Basturk, "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems," in Proc. International Fuzzy Systems Association World Congress: 789-798, 2007 .
[59] C. A. C. Coello, "Use of a self-adaptive penalty approach for engineering optimization problems," Comput. Ind., 41(2): 113-127, 2000.
[60] C. A. C. Coello, E. M. Montes, "Constraint-handling in genetic algorithms through the use of dominance-based tournament selection," Adv. Eng. Inf., 16(3): 193-203, 2002.
[61] L. dos Santos Coelho, "Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems," Expert Syst. Appl., 37(2): 1676-1683, 2010.
[62] C. A. Coello Coello, R. L. Becerra, "Efficient evolutionary optimization through the use of a cultural algorithm," Eng. Optim., 36(2): 219-236, 2004.
[63] Q. He, L. Wang, "An effective co-evolutionary particle swarm optimization for constrained engineering design problems," Eng. Appl. Artif. Intell., 20(1): 89-99, 2007.
[64] Q. He, L. Wang, "A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization," Appl. Math. Comput., 186(2): 1407-1422, 2007.
[65] J. Lampinen, "A constraint handling approach for the differential evolution algorithm," in Proc. the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), 2: 1468-1473, 2002.
[66] R. Rao, "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems," Int. J. Ind. Eng. Comput., 7(1): 19-34, 2016.
[67] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, "Multi-verse optimizer: A nature-inspired algorithm for global optimization," Neural Comput. Appl., 27: 495-513, 2016.
[68] G. I. Sayed, A. Darwish, A. E. Hassanien, "A new chaotic multi-verse optimization algorithm for solving engineering optimization problems," J. Exp. Theor. Artif. Intell., 30(2): 293-317, 2018.
[69] A. Kaveh, A. Dadras, "A novel meta-heuristic optimization algorithm: thermal exchange optimization," Adv. Eng. Software, 110: 69-84, 2017.
[70] F. Z. Huang, L. Wang, Q. He, "An effective co-evolutionary differential evolution for constrained optimization," Appl. Math. Comput., 186(1): 340-356, 2007.
[71] S. Korkmaz, N. B. H. Ali, I. F. Smith, "Configuration of control system for damage tolerance of a tensegrity bridge," Adv. Eng. Inf., 26(1): 145-155, 2012.
آمار
تعداد مشاهده مقاله: 171
تعداد دریافت فایل اصل مقاله: 149