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Background and Objectives: The development of effective meta-heuristic 
algorithms is crucial to solve complex optimization problems. This paper 
introduces the Society Deciling Process (SDP), a novel socio-inspired meta-
heuristic algorithm that simulates the social categorization into deciles based on 
metrics such as income, occupation, and education. The objective of this 
research is to introduce the SDP algorithm and evaluate its performance in terms 
of convergence speed and hit rate, comparing it with seven well-established 
meta-heuristic algorithms to highlight its potential in optimization tasks. 
Methods: The SDP algorithm's efficacy was evaluated using a comprehensive set 
of 14 general test functions, including benchmarks from the CEC 2019 and CEC 
2022 competitions. The performance of SDP was compared against seven 
established meta-heuristic algorithms: Artificial Hummingbird Algorithm (AHA), 
Dwarf Mongoose Optimization algorithm (DMO), Reptile Search Algorithm (RSA), 
Snake Optimizer (SO), Fick’s Law Optimization (FLA), Prairie Dog Optimization 
(PDO), and Gazelle Optimization Algorithm (GOA). Statistical analysis was 
conducted using Friedman's rank and Wilcoxon signed-rank tests to evaluate the 
relative performance in terms of exploration, exploitation capabilities, and 
proximity to the optimum solution. 
Results: The results demonstrated that the SDP outperforms its counterparts in 
terms of convergence speed and hit rate across the selected test functions. In 
statistical tests, SDP showed significantly better performance in exploration and 
exploitation, leading to a higher proximity to optimum compared to other 
algorithms. Furthermore, when applied to five complex engineering design 
problems, the SDP algorithm exhibited superior performance, outmatching the 
state-of-the-art algorithms in terms of effectiveness and efficiency. 
Conclusion: The Society Deciling Process (SDP) algorithm introduces a novel and 
effective approach to optimization, inspired by societal structure dynamics. Its 
superior performance in convergence speed, exploration and exploitation 
capabilities, and application to complex engineering problems establishes SDP as 
a promising meta-heuristic algorithm. This research not only demonstrates the 
potential of socio-inspired algorithms in optimization tasks but also opens 
avenues for further enhancements in meta-heuristic algorithm designs. 
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Introduction 

In the ever-evolving landscape of technology, 

optimization problems have become pervasive across 
diverse domains such as science, engineering, management, 

 
and economics. The complexity of these challenges, 

coupled with resource constraints, necessitates optimal 

solutions. The primary objective in solving optimization 

problems lies in determining the most suitable values for 
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variables to either maximize or minimize a given 

objective function [1]. However, conventional 

mathematical techniques and heuristic algorithms 

encounter a significant hurdle—local optima 

entrapment—when dealing with intricate problems 

featuring numerous candidate values and multiple local 

optima. 

To address this challenge, meta-heuristic algorithms 

have emerged as a powerful class of stochastic 

optimization methods. Distinguished by their gradient-

free, problem-independent, and local-optima-free 

nature, these algorithms offer a departure from 

traditional approaches [2]. By applying various operators 

iteratively, they navigate the search space based on an 

objective function [3], making them well-suited for a 

wide array of scientific and industrial applications [3]. 

Meta-heuristic algorithms can be broadly categorized 

into two groups: individual-solution-based and 

population-based [4]. The latter, starting with a 

randomly generated population of solutions, proves 

more popular due to its enhanced ability to explore and 

exploit the search space, targeting global optima [5]. 

Inspired by evolutionary processes, natural phenomena, 

and social behaviors, population-based meta-heuristic 

algorithms can be further classified into Evolutionary 

Algorithms (EAs), Natural Phenomenon (NP) algorithms, 

and Social Behaviors (SBs) algorithms: 

 1. Evolutionary Algorithms (EAs) that mimic the 

process of natural evolution. Genetic Algorithm (GA) [6], 

and Genetic Programming (GP) [7], Single Candidate 

Optimizer (SCO) [8], and Attack-Leave Optimizer (ALO) 

[9] are the well-known samples of this class. 

2. Natural Phenomenon (NP) algorithms that exploit 

physical and chemistry principles. Simulated Annealing 

(SA) [10], Energy Valley Optimizer (EVO) [11], Water 

Cycle Algorithm (WCA) [12], Nutcracker optimizer (NOA) 

[13], Orchard Algorithm (OA) [14], Swarm Magnetic 

Optimizer (SMO) [15], Fusion–fission optimization 

(FuFiO) [16], and Fick’s Law Optimization (FLA) [17], 

Geometric Mean Optimizer (GMO) [18] and Physics-

Inspired Discriminative Classifier (PIDC) [19] can be 

considered as popular samples of this class. 

3. Social Behaviors (SBs) algorithms which are divided 

into two subgroups: Swarm Intelligence (SI) algorithms 

and Human Behaviors (HB) algorithms. SI algorithms 

simulate the self-organized and collective behaviors in 

nature. Actually, these algorithms originate social 

behaviors of species, such as ants or bees. Ant Colony 

Optimization (ACO) inspired by foraging behaviors of 

ants is a popular algorithm in this group. Particle Swarm 

Optimization (PSO) [20], Snake Optimizer (SO) [21], 

Prairie Dog Optimization (PDO) [22], Aquila Optimizer 

(AO) [23], Red Fox Optimization (RFO) algorithm [24], 

Honey Badger Algorithm (HBA) [1], Reptile Search 

Algorithm (RSA) [25], Gazelle Optimization Algorithm 

(GOA) [26], Artificial Hummingbird Algorithm (AHA) [3], 

Dung Beetle Optimizer [27], Fox optimizer (FOX) [28], 

Giant Trevally Optimizer (GTO) [29], Mountain Gazelle 

Optimizer (MGO) [30], and 

Dwarf Mongoose Optimization (DMO) algorithm [31], 

Hippopotamus Optimization (HO) [32], Blood-Sucking 

Leech Optimizer (BSLO) [33], Greylag Goose 

Optimization (GGO) [34], Genghis Khan Shark Optimizer 

(GKSO) [35], Ladybug Beetle Optimization (LBO) [36], 

and Crayfish Optimization Algorithm (COA) [37] can be 

mentioned as other popular algorithms in this class. 

HB algorithms imitate human behaviors in society. 

Social Group Optimization (SGO) [38] is a popular HB 

algorithm inspired by the social interaction of members. 

This algorithm has two phases: improving and acquiring. 

In the first phase, each group member increases his/her 

knowledge by interacting with the best member of the 

group. In the second phase, each member acquires 

knowledge from the best member of the group as well 

as other randomly selected members. Inspired from the 

council evolution, City Councils Evolution (CCE) [39] is 

another well-known HB algorithm. Here, councils evolve 

from the smallest neighbors to the largest ones, regions, 

and ultimately the whole city is considered. Due to the 

hierarchical manner of councils’ evolution, CCE uses a 

hierarchical structure like a tree to model council 

members and bosses. Teaching–Learning-Based 

Optimization (TLBO) [40] is another popular HB 

algorithm inspired by the teaching and learning 

phenomenon in a classroom. TLBO has two phases 

named teacher and student. In the teacher phase, the 

fittest individual is selected as a teacher and the learning 

process is done by the teacher. While, in the student 

phase, all students play the teacher role and learning is 

carried out by the student interactions. Parliamentary 

Optimization Algorithm (POA) [41], Ideology Algorithm 

(IA) [42], Intelligent Clonal Optimizer (ICO) [43], 

Expectation Algorithm (ExA) [44], and Seasons 

Optimization (SO) [45] are the well-known HB 

algorithms. 

The question that arises is why additional meta-

heuristic optimization algorithms are necessary despite 

the existence of various ones. In response, it should be 

noted that technological advancements have unveiled 

new optimization problems. Based on the No Free Lunch 

(NFL) theorem [46], existing algorithms may not 

universally solve these problems. The NFL theorem 

asserts the absence of a single, all-encompassing meta-

heuristic algorithm applicable to every optimization 

problem. Consequently, this paper introduces a novel 

socio-inspired meta-heuristic optimization algorithm 

known as the society deciling process (SDP). SDP 

emulates the societal deciling process based on factors 
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such as monthly income, occupation, and education. 

To assess and compare the efficacy of SDP against 

AHA [3], DMO [31], RSA [25], SO [21], PDO [22], FLA [17], 

and GOA [26], experiments are conducted using 14 

general test functions, 9 from CEC 2019, and 12 from 

CEC 2022. The evaluation criteria include the 

effectiveness in finding solutions closest to the optimum, 

early convergence, and hit rate (accuracy). 

The key contributions of this paper include the 

introduction of the novel SDP algorithm, which 

demonstrates superior convergence speed and hit rate 

compared to existing algorithms. Our analysis, validated 

through Friedman's test, establishes the statistical 

superiority of SDP in terms of finding solutions closest to 

optima. Additionally, the paper extends the evaluation 

to three constrained engineering design problems, 

affirming the algorithm's effectiveness across diverse 

applications. 

SDP proves particularly suitable for addressing 

optimization challenges in various fields, including but 

not limited to science, engineering, management, and 

economics.  

 

 

Its robust performance, especially in scenarios with 

intricate and dynamic parameters, positions SDP as a 

versatile and effective tool for solving real-world 

optimization problems. 

The remaining sections of the paper are outlined as 

follows. Initially, the inspiration and intricacies of the 

SDP algorithm will be presented. Following that, the 

experimental results of SDP across general, CEC 2019, 

and CEC 2022 test functions will be provided in the 

Experimental Results section. Subsequently, a statistical 

analysis of the results is conducted using the Friedman 

test. Moreover, the proposed algorithm (SDP) on five 

constrained engineering design problems is evaluated in 

this section. Finally, the conclusion section concludes the 

paper, summarizing the findings and offering directions 

for future research endeavors. 

Society Deciling Process (SDP): The Presented 
Optimization Algorithm 

This section delineates the Society Declining Process 

(SDP) algorithm, focusing on its inspiration and 

intricacies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: The deciling process of all people in a society. 
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A.  Inspiration 

Adverse economic conditions, characterized by 

economic instability, high inflation, reduced purchasing 

power, and economic discrimination, significantly impact 

people's living standards, encompassing nutrition, 

health, and education. Recognizing vulnerable 

individuals and empowering them is pivotal. To achieve 

this, the population is categorized into deciles based on 

criteria like monthly income, occupation, and education. 

Regular evaluations, considering changes in these 

criteria, lead to modifications in the society's decile 

distribution. 

Initially, all individuals are placed in the first decile. As 

some individuals become relatively wealthier, the 

society divides into two deciles (one and two), with this 

process continuing until all individuals are distributed 

across ten deciles. Fig. 1 illustrates the progressive 

deciling of society. 

B.  Details of SDP 

In the SDP algorithm, akin to other meta-heuristic 

methods, the process begins with a randomly generated 

population X, illustrated in Fig. 2. This population 

consists of N vectors, each of length m, representing the 

individuals and their respective variables related to 

deciling criteria. The variables (xi,j) are determined using 

the (1): 

 𝑥𝑖,𝑗 = 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑗 − 𝑙𝑗) + 𝑙𝑗    (1) 

Here, rand is a random value in the interval [0, 1] 

where lj and uj denote the lower and upper bounds of j-

th variable. The fitness of each solution Xi for the test 

function f is computed using the (2): 

 fitness = 𝑓(𝑋𝑖) = 𝑓(𝑥𝑖,1,𝑥𝑖,2, … , 𝑥𝑖,𝑚)          (2) 

 

 

 

 

 

 

 

 

 
Fig. 2: Population X with N candidate solutions. 

 

In alignment with the societal deciling process (Fig. 1), 

the initial placement involves assigning all individuals to 

the first decile. After altering the average values of 

deciling criteria for some individuals, the society is 

iteratively divided into two deciles. Consequently, the 

entire initial population is initially placed in the first 

decile. Following fitness computation, solutions are 

sorted and distributed into two deciles (1 and 2), with 

the N/2 solutions possessing the highest fitness placed in 

decile 2, and the rest in decile 1, establishing a 2-decile 

state. 

In a general d-decile state (2 ≤ d ≤ 10), the fitness-

based sorted population X is partitioned into d subsets of 

size decN (= N/d). These subsets are then allocated to 

the respective deciles (d, d-1, ..., 1). Fig. 3 visually 

represents the population X in a d-decile state. Denoting 

the maximum iteration number of the SDP algorithm as 

MaxIter, the number of iterations for each d-decile state 

(2 ≤ d ≤ 10) is dIter (= MaxIter/9). During each d-decile 

state iteration, the SDP algorithm follows these steps 

dIter times: 

Step 1: Evaluate the population X using the test 

function f and sort X based on fitness values. 

Step 2: Divide X into d partitions, each with the size of 

decN. 

Step 3: For each deciling criterion, reposition all 

solutions in decile k (k = d, d-1, ..., 1) based on higher 

deciles j (k ≤ j ≤ d) using the Repose function. Algorithm 1 

details the pseudo-code of the Repose function, which 

adjusts the position of a solution P (in decile k) based on 

the fittest solution in the same decile (Bk) and those in 

higher deciles (Bj). The weighted average (wAvg) of Bj in 

higher deciles is calculated using (3), emphasizing the 

importance of higher deciles. The final position is 

determined by combining the average of wAvg and Bk 

using a modified arithmetic crossover. 

𝒘𝑨𝒗𝒈 =
∑ (𝒋 − 𝒌) ∗ 𝑩𝒋𝒅

𝒋=𝒌+𝟏

∑ (𝒋 − 𝒌)𝒅
𝒋=𝒌+𝟏

 
(3) 

Algorithm 2 outlines the steps of the Society Declining 

Process (SDP) algorithm. In Line 2, a population X 

comprising candidate solutions is generated randomly. 

The fitness values of these candidates are then 

computed using the calcFitness function, and the entire 

population sort is accomplished according to these 

fitness values. 

In Line 9, the algorithm proceeds to compute the first 

(sIndex) and last (eIndex) indices of the current decile. 

Subsequently, in Lines 10-13, the positions of all 

solutions within the specified range (sIndex ≤ j ≤ eIndex) 

are adjusted using the Repose function. Importantly, if 

the result of the Repose operation yields a solution with 

a higher fitness value, it replaces the original solution in 

the population X. 

To better understand this algorithm, nested iteration 

loops are explained in more detail: 1) The first for loop in 

line 4: in this loop, the variable d controls the index of 

the d-decile state, which starts from 2 and ends in 10. 2) 

The second for loop in line 6: in this loop, the variable 

iter controls the number of algorithm repetition for the 

d-decile state, which starts from 1 and continues to diter 

 

x1,1     x1,2  ......   

x1,m 

xN,1     xN,2   ......   

xN,m 

X =  
 

X1 

X2 

XN 

=  
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(=MaxiIter/9). 3) The third for loop in line 7: in this loop, 

the variable cr controls the number of deciling criteria 

(the variable number of test functions), which starts 

from 1 and continues to m. 4) The fourth for loop in line 

8: in this loop, the variable k controls the index of higher 

deciles, which starts from d and continues to 1. 5) The 

fifth for loop in line 10: in this loop, the variable j 

controls the indices of the current decile, which starts 

from sIndex = (d-k)*decN+1 and continues to eIndex = (d-

k+1)*decN. 

Additionally, Fig. 4 provides a visual representation of 

the algorithm's flowchart, offering a clear illustration of 

the sequential steps involved in the SDP algorithm. This 

visual aid enhances the understanding of the algorithm's 

execution and aids in visualizing the interplay of 

operations during each iteration. 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 
 

 
Fig. 3: Population X in the d-decile state. Bk (1 ≤ k ≤ d) indicates the fittest solution in decile k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The flowchart of the SDP algorithm. 
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Experimental Results 

To evaluate the proposed algorithm, i.e., SDP, four 

distinct experiment set were conducted. The obtained 

results were then compared with outcomes generated 

by seven established meta-heuristic algorithms, namely 

AHA [3], DMO [31], RSA [25], SO [21], PDO [22], FLA [17], 

and GOA [26]. The following experiments were carried 

out for comparison purposes: 

1) The first experiment applies 14 general test 

functions to evaluate the exploration and 

exploitation capabilities of the underlying 

algorithms. Here, exploitation refers to the 

algorithm's capacity to enhance the quality of 

promising solutions through local search, while 

exploration ability pertains to the algorithm's 

capability to freely explore different areas of the 

landscape, thereby avoiding local optima. 

2) The second experiment utilizes 9 test functions 

from CEC 2019 to evaluate the efficiency of 

algorithms in both exploration and exploitation 

aspects. 

3) The third experiment encompasses 12 test 

functions from CEC 2022, serving as a basis for 

comparing algorithm efficiency in relation to 

exploration and exploitation. 

4) The fourth experiment employs five challenging 

engineering design problems to validate the 

performance of SDP. The results are then 

compared with those of various algorithms from 

the existing literature. 

Meta-heuristic algorithms involve various parameters 

that can be adjusted to suit different optimization 

problems. These parameters play a crucial role in striking 

a balance between exploration and exploitation 

capabilities. This equilibrium allows the algorithm to 

 
Algorithm 1: The repose function 

 
Input: P: a given solution, k,d; 

Output: an individual with the highest fitness. 

1: Bj = the fittest solution in decile j, (k ≤ j ≤ d); 

2: Compute wAvg using Eq. (3); 

3: z = a value is randomly selected as either 1 or 2; 

4: rnd = a random value in the interval [0, 1]; 

5: 𝛼 =  (−1)𝑘+1 ∗ 𝑟𝑛𝑑;  

6: Y1 = α*P +(1-α)*(Bk + wAvg)/2; Y2 = (1-α)*P +α*(Bk + wAvg)/2; 

7: return max (Y1, Y2); 

 

 
 

Algorithm 2: The SDP algorithm 

 
Input: N: the population size, MaxIter, m: the number of deciling criteria, 

                 f : a test function. 

Output: a solution with the best fitness. 
1: Array [][] X = new Array [N][m]; Array [] fit = new Array [N]; 
2: X = createInitial (N, m); fit = calcFitness (X, f); Sort (X , fit); best = X[1]; bestFit = fit[1]; 
3: diter = MaxIter/9;  
4: for d =2 to 10 do 
5:     decN = N/d; 
6:     for iter = 1 to dIter do 
7:           for cr = 1 to m do  
8:          for k = d downto 1 do  
9:   sIndex= (d-k)*decN+1; eIndex= (d-k+1)*decN; 
10:  for j = sIndex to eIndex do 
11:   P = repose (X[j], k, d); 
12:   if f (P) > fit [j] then M[j] =P; fit[j] = f (P);  
13:  end for j 
14:          end for k  
15:          fit = calcFitness (X, f); Sort (X , fit); 
16:          end for cr 
17:          if fit [1]>bestFit then best = X[1]; bestFit = fit[1]; 
18:    end for iter 
19: end for d 
20: return best; 
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navigate diverse regions within the state space. 

Additionally, when necessary, the algorithm can perform 

a local search around promising solutions to reach the 

optimal solution. Hence, determining appropriate values 

for these parameters is of utmost importance. Notably, 

algorithms with fewer parameters tend to perform 

better. 

Fortunately, the SDP algorithm does not require 

dedicated parameter tuning. The parameter settings for 

SDP and other algorithms are presented in Table 1. To 

ensure a fair performance comparison among different 

algorithms, it is essential to set a consistent maximum 

number of fitness function evaluations (MNFFE), 

considering that the number of evaluations may vary 

between algorithms. Consequently, the maximum 

iteration number (MaxIter) can be derived from MNFFE. 

Assuming NFFE represents the fitness function calling 

number in each iteration of the algorithm, MaxIter can 

be calculated as MNFFE/NFFE. 

For instance, in the SDP algorithm, NFFE is expressed 

as 2×m×N, leading to MaxIter being MNFFE/(2×m×N). It's 

worth noting that the parameters N and MNFFE are 

universally set at 30 and 10E+5, respectively, for all 

algorithms. 

The outcomes were derived from the execution of 

algorithms in the Matlab 2017a environment, performed 

30 times using an Intel Core i5 CPU and 6GB RAM. The 

result tables present the best (Best), average (Ave), and 

standard deviation (Std) of the solutions identified as the 

best so far across all runs. 

 
Table 1: Assumed parameter values of all algorithms (N = 30 and MNFFE = 10E+5) 

 

 
 

C.  Parameter Analysis 

The effectiveness of the SDP algorithm is significantly 

influenced by certain parameters, such as N and m 

(representing the dimension of test functions). To assess 

this impact, the SDP is executed for various N values, 

considering F1 and F2 from the general test functions, F3 

and F4 from the CEC 2019 functions, and F2 and F3 from 

the CEC 2022 functions. It is worth noting that the 

maximum number of fitness function evaluations 

(MNFFE) is set at 30000. As indicated in Table 2, the best 

effectiveness for SDP is observed when N is equal to 30. 

To analyze the effect of m on SDP, the algorithm is 

executed for different values of this parameter across 

test functions F4, F5, F6, and F7 belonging to CEC 2022. 

It is important to note that general and CEC 2019 test 

functions are defined solely with dimension, 

necessitating the selection of CEC 2022 functions, which 

are specified for three different dimensions. Table 3 

reveals that SDP exhibits optimal effectiveness when m 

is set to 2 in the majority of the considered test 

functions. 

Furthermore, the table illustrates the impact of 

increasing the dimension of test functions on the 

algorithm's execution time. According to the table, as 

the dimension of the test functions increases, the 

algorithm's execution time rises due to the escalated 

number of fitness function evaluations, resulting in a 

reduction in the number of algorithm repetitions. 

D.  Experiment 1: 14 General Test Functions 

In this experiment, 14 general test functions are used 

to analyze and compare SDP and others with regard to 

exploitation and exploration abilities. Table 4 [47] 

provides a more detailed descriptions of these functions. 

Functions F1-F5 are unimodal with single global optima, 

while functions F6-F9 are multimodal, featuring a global 

optimum and several local optima. Consequently, finding 

an optimal solution in test functions such as F6-F9 serves 

as a robust benchmark for evaluating and comparing the 

exploration and local optima avoidance capabilities of 

SDP and other algorithms. Additionally, functions F10-

F14 exhibit shifted and rotation attributes, presenting 

increased complexity for a more precise evaluation of 

SDP and others. Table 5 presents the obtained results of 

SDP and other algorithms. Furthermore, the Friedman 

test is employed to rank the performance of SDP and 

others—a non-parametric statistical hypothesis test 

suitable for multiple comparisons of related data sets 

[48]. Here, first the rank of algorithms in each test 
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function is determined and then the mean ranks across 

all test functions are calculated. An algorithm achieving 

rank 1 will be the best indicating the least mean rank, 

while the highest rank signifies the worst performance. 

The results of this test, along with the hit rate based on 

the reported results in Table 5, are depicted in Fig. 5. As 

demonstrated in this figure, the first and second ranks 

are obtained by SO and SDP, respectively. Moreover, the 

highest hit rate (0.50) after RSA, PDO, and SO is achieved 

by SDP. In other words, in 7 test functions (i.e., 0.50*14), 

SDP generates the exact solution. 

In addition to utilizing the Friedman test, researchers 

can employ the Wilcoxon signed-rank test to analyze the 

obtained results. This non-parametric statistical method, 

designed for comparing two samples [49], facilitates the 

determination of cases where Algorithm X outperforms, 

underperforms, or demonstrates similar performance to 

Algorithm Y. To fulfill this purpose, three key test 

statistics, namely R-, R+, and R=, are utilized. Fig. 6 

illustrates the Wilcoxon signed-rank test outcomes for 

the pairwise comparison of SDP versus AHA, DMO, RSA, 

SO, PDO, FLA, and GOA. 

The analysis depicted in Fig. 6 reveals that, in the 

majority of pairwise comparisons, the values of R- 

surpass those of R+. This observation suggests that SDP 

exhibits superior effectiveness compared to most other 

algorithms under consideration. 

Another criterion that can be employed for 

comparing the efficiency of our considered algorithms is 

convergence speed. The optimal solution is reached 

sooner with a higher convergence speed of an algorithm. 

To achieve this, test functions F11, F12, F13, and F14, 

characterized by being shifted and rotated, are 

considered, and all algorithms are executed up to the 

number of fitness function evaluations equal to 10E+5. 

The convergence curve of SDP and others in these test 

functions is depicted in Fig. 7. In most of these functions, 

the fastest convergence is observed with SDP.

 
Table 2: The results of executing SDP for different N 

 

 
 

 

   
 

Fig. 5: Results of the Friedman's rank test along with hit rate for general test functions. 
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Table 3: The results of executing SDP for different m (the dimension of test functions) 

 

 

Table 4: The general test function details 

 

 

 
 

 
 

Fig. 6: Results of the Wilcoxon Signed-Rank Test on General Test Functions. 
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Table 5: Comparative results for general test functions 

 

 
 

E.  Experiment 2: CEC 2019 Test Functions 

In this experiment, the performance of SDP is 

compared with that of the considered algorithms in 

terms of both exploration and exploitation for solving 

the test functions designed for CEC 2019 [50]. These 

functions are of a multimodal type with one global 

minimum. Furthermore, functions F4 to F10 possess few 

movement and rotation attributes, whereas functions F1 

to F3 have default attributes. The details of these 

functions, such as name, dimension, range, and optimum 

value, are presented in Table 5. According to this table, 

functions F1 to F3 have different dimensions and ranges, 

whereas F4 to F10 are 10-dimensional and fall within the 

interval [-100, 100]. Additionally, the optimum value for 

all functions is set to 1. Some algorithms, such as SDP 

and AHA, exhibit peculiar behavior when solving the F7 

test function, leading to the exclusion of this test 

function from the test suite. The results of all algorithms 

on solving CEC 2019 test functions are reported in Table 

7.  

The statistical comparison of SDP and other 

algorithms in solving the test functions of CEC 2019 

involves the use of the Friedman test. The results of this 

test, presented in Fig. 8 along with the hit rate in Table 5, 

confirm that SDP exhibits the least mean rank, signifying 

superior performance in identifying solutions closest to 

an optimum.  

This observation implies that powerful balancing of 

exploitation and exploration abilities is achieved by SDP 

compared to other algorithms. Furthermore, the highest 

hit rate (0.11) among the considered algorithms is 

attained by SDP, DMO, and RSA, as depicted in the third 

diagram of Fig. 8.  

Furthermore, alongside the Friedman test, the 

Wilcoxon signed-rank test highlights that across all 

paired comparisons, the values of R- consistently surpass 

R+, suggesting that SDP exhibits superior effectiveness 

compared to the majority of other algorithms, as 

depicted in Fig. 9. 
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Fig. 7: Convergence curve of all algorithms for general test functions. 

 

   

 

 

Fig. 8: Results of the Friedman's rank test along with hit rate for CEC 2019 test functions.  
 

 
Fig. 9: Results of the Wilcoxon signed-rank test to the CEC 2019 test functions. 
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Table 6: The details of CEC 2019 test functions 

 

 
 
Table 7: Comparative results for CEC 2019 test functions  

 

 
 

To assess the convergence speed of SDP and other 

algorithms, they were executed on the test functions of 

F2 and F3 (including default attributes), as well as F4, F5, 

F8, and F9 (including a few movement and rotation 

attributes), up to the number of fitness function 

evaluations equal to 10E+5. The convergence speed of 

all algorithms in these test functions is depicted in Fig. 

10. In all of these functions, the fastest convergence 

speed is exhibited by SDP. 

F.  Experiment 3: CEC 2022 Test Functions 

In this experiment, the performance of SDP was 

compared with that of AHA, DMO, RSA, SO, PDO, FLA, 

and GOA in terms of both exploration and exploitation 

capabilities on the designed test functions of CEC 2022. 

The suite used includes 12 functions categorized into 

different types: one unimodal (F1), four basic (F2-F5), 

three hybrids (F6-F8), and four composition functions (F9-

F12). As detailed in Table 8, each function is 

characterized by similar dimensions, uniformly set at 10, 

and a consistent range of [-100, 100]. The comparative 

results for all algorithms on the CEC 2022 test functions 

are presented in Table 9. 

The evaluation of the performance of SDP and others 

in addressing these test functions involves the utilization 

of the Friedman test. The results of this test, along with 

the hit rate from Table 7, are presented in Fig. 11. In the 

first and second diagrams of this figure, confirmation is 

provided that the first rank in discovering the closest 

solutions to optima is achieved by SDP. It is thereby 

inferred that a powerful balance between exploitation 
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and exploration abilities is maintained by SDP when 

compared to other algorithms. In essence, SDP is capable 

of freely exploring different parts of the search space, if 

necessary, and enhancing the quality of current 

promising solutions through local searching around 

them. Consequently, SDP can effectively avoid local 

optima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chosen functions include unimodal (F1), basic (F2 

and F3), hybrid (F6, F7, and F8), and composition (F9 and 

F10). The convergence speed of all algorithms in these 

selected test functions is depicted in Fig. 13. In the 

majority of these functions, the fastest convergence 

speed is observed with SDP. 

G.  Experiment 4: Five Constrained Engineering Design 
Problems 

In this experiment, five constrained engineering 

design problems are utilized to evaluate the 

performance of SDP, and the results are compared with 

various algorithms presented in the literature. Further 

details regarding these problems, including 

Moreover, the third diagram in Fig. 11 illustrates that, 
following GOA, which boasts the highest hit rate (0.5), 
SDP, together with AHA and SO, attains the second-
highest hit rate (0.41) among the algorithms under 
consideration. Additionally, beyond the Friedman test, 
the Wilcoxon signed-rank test results in Fig. 12 indicate 
that the values of R- surpass R+ in all pair comparisons. It 
is thereby concluded that SDP exhibits superior 
effectiveness compared to the majority of other 
algorithms. Given that the test suite of CEC 2022 
comprises four distinct types of test functions, the 
evaluation and comparison of algorithm convergence 
speed involve the selection of specific functions of 

varying types. 

  

  

  

 

Fig. 10: Convergence curve of all algorithms on solving the CEC 2019 test functions. 
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mathematical formulas, can be found in [3]. To assess 

the effectiveness of SDP in optimizing the specified 

constrained problems, the constraint-handling 

mechanism introduced in [51] is applied to SDP. In this 

mechanism, also known as the penalty method, a 

penalty function is defined to transform the constrained 

problem into an unconstrained problem. The outcomes 

from each problem are presented in Tables 10-14, 

reflecting 30 independent runs for each. 

Speed reducer design: The objective of this problem 

is to minimize the weight of a speed reducer. Seven 

decision variables need to be defined to meet eleven 

constraints. Table 10 presents the outcomes from SDP 

and various notable algorithms from the literature, 

including SC [52], PSO-DE [53], DELC [54], DEDS [55], 

HEAA [56], MDE [57], and ABC [58]. It is confirmed by 

this table that the closest solution to the optimal is 

jointly achieved by SDP, DELC, and DEDS, each attaining 

the highest rank. 

Pressure vessel design: The goal here is to minimize 

the fabrication cost of a pressure vessel, involving four 

design variables and four constraints. The results from 

SDP and several reputable algorithms like GA2 [59], GA3 

[60], QPSO [61], and PSO [53] are shown in Table 11. 

According to the table, the first rank in achieving the 

closest solution to the optimal is maintained by SDP.  

Tension/compression spring design: This problem 

focuses on designing a tension/compression spring with 

the aim of minimizing its weight, involving four design 

variables and constraints concerning minimum 

deflection, shear stress, and surge frequency. Table 12 

showcases results from SDP and other recognized 

algorithms in the literature such as GA2, GA3, CAEP [62], 

CSPSO [63], HPSO [64], DE [65], SC, and ABC. Based on 

this table, the closest solution to the optimum is found 

by SDP, which is ranked first. 

Multiple disc clutch brake (MDCB): The optimization 

of a multiple disc clutch brake, aimed at minimizing its 

overall mass, is the goal of this problem. Five key design 

variables are manipulated in this optimization process: 

the inner radius, outer radius, disc thickness, actuating 

force, and the number of friction surfaces. The results 

are displayed in Table 13, where the efficacy of SDP in 

comparison with other notable algorithms such as JAYA 

[66], TLBO [40], ABC [40], MVO [67], and CMVO [68] is 

demonstrated. It is confirmed by this table that the 

closest solution to the optimum is obtained by SDP, 

which ranks first. 

Welded beam design (WBD): The development of an 

economical welded beam design through cost 

minimization is the objective of this problem, which 

involves four critical variables: weld thickness, length of 

the welded segment, beam height, and beam width. The 

outcomes of various algorithms, including SDP, TEO [69], 

SCA [52], CDE [70], HAS-GA [71], and CAEP [62], are 

presented in Table 14. It is shown by this table that SDP 

achieves the top rank, confirming its effectiveness in 

securing a solution that closely aligns with the optimum. 
 

 
Table 8: The details of CEC 2022 test functions (For all test functions: D = 10 and Range = [-100, 100]) 
 

 
 

   
Fig. 11: Results of the Friedman's rank test along with hit rate for CEC 2022 test functions. 

0

2

4

6

8

S
D

P

A
H

A

D
M

O

R
S

A

S
O

P
D

O

F
L

A

G
O

A

Mean Rank

0

2

4

6

8

S
D

P

A
H

A

D
M

O

R
S

A

S
O

P
D

O

F
L

A

G
O

A

Rank

0

0.2

0.4

0.6

S
D

P

A
H

A

D
M

O

R
S

A

S
O

P
D

O

F
L

A

G
O

A

Hit rate



Society Deciling Process: A Socio-Inspired Meta-Heuristic Algorithm 

J. Electr. Comput. Eng. Innovations, 12(2): 535-556, 2024                                                                          549 
 

Table 9: Comparative results for CEC 2022 test functions 

 

 
 

 
Fig. 12: Results of the Wilcoxon signed-rank test for CEC 2022 test functions. 

 

H.  Discussion 

The intense exploitation and exploration capabilities 

of SDP are evident from the aforementioned four 

experiments. Its performance in solving 

unimodal/multimodal functions affirms its 

exploitation/exploration capability. The competitive 

edge of SDP over alternative meta-heuristic algorithms is 

demonstrated by the test outcomes.  

 

Superiority is exhibited by SDP, particularly in 

effectively addressing high-dimensional functions, 

surpassing most other algorithms in this context. This 

result signifies a crucial finding, reinforcing the no-free-

lunch theory, as SDP does not excel in solving all 40 

functions; in some cases, other algorithms prove more 

effective than the SDP algorithm. 
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Conclusion 

This paper introduces the innovative Society Deciling 

Process (SDP), a meta-heuristic algorithm inspired by the 

societal practice of categorizing individuals into deciles 

based on factors like monthly income, occupation, and 

education. The evaluation of SDP against seven 

established meta-heuristic algorithms (AHA, DMO, RSA, 

SO, PDO, FLA, and GOA) using three sets of test functions 

reveals its superior performance in terms of 

convergence speed and hit rate. Friedman's rank analysis 

consistently positions SDP with the best mean rank, 

indicating its proximity to optimal solutions and 

heightened exploration and exploitation capabilities 

compared to other algorithms. 

Moreover, the potential expansion of the SDP 

algorithm to include other quantiles, such as quartiles, is 

discussed. This expansion introduces flexibility in 

population division and repositioning, with implications 

for granularity, sensitivity, computational efficiency, 

exploration and exploitation balance, adaptability to 

problem characteristics, convergence speed, and 

algorithm robustness. The choice of quantiles becomes 

crucial and should align with the specific properties of 

the optimization problem at hand. 

In summary, the inclusion of other quantiles enhances 

the adaptability of the SDP approach to different 

problem characteristics and optimization requirements. 

The careful consideration of quantile choice is essential 

for optimizing the algorithm's performance. Additionally, 

recognizing SDP as a single-objective algorithm prompts 

future considerations for developing a multi-objective 

version or exploring its binary iteration. Combining SDP 

with other optimization techniques also offers promising 

avenues for future research. 

To assess the overall performance of the presented 

SDP algorithm, a statistical analysis of the experiment 

results is conducted using the Friedman test. The results 

of the Friedman test, as depicted in Fig. 14, include the 

hit rate for all reported outcomes. Due to the test result 

(i.e., Fig. 14), the least mean rank (i.e., first rank) for 

finding the closest solutions to an optimum is attributed 

to SDP. Furthermore, the highest hit rate (0.40) among 

the considered algorithms is confirmed by the third 

diagram in this figure, signifying that SDP achieves an 

optimum solution in 40% of the considered test 

functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: Results of different methods on the speed reducer problem 
 

 

Table 11: Results of different methods on the pressure vessel problem 
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Fig. 13: Convergence curve of all algorithms on solving the CEC 2022 test functions. 
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Fig. 14: Results of the Friedman's rank test along with hit rate for all test functions. 

Table 12: Comparative analysis of various approaches for tension/compression spring design 
 

 
 

Table 13 Comparative analysis of various approaches to addressing the multiple disc clutch brake issue 
 

 
 

Table 14 Comparative analysis of various approaches for solving the welded beam design challenge 
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