Journal of Computational & Applied Research in Mechanical Engineering (JCARME)
مقاله 7 ، دوره 11، شماره 1 ، آذر 2021، صفحه 67-100 اصل مقاله (1.26 M )
نوع مقاله: Review paper
شناسه دیجیتال (DOI): 10.22061/jcarme.2021.7390.1983
نویسندگان
Satish Chinchanikar* ؛ Vaibhav S. Gaikwad
Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, Pune, Maharashtra, 411048, India
تاریخ دریافت : 15 مهر 1399 ،
تاریخ بازنگری : 14 اسفند 1399 ،
تاریخ پذیرش : 16 اسفند 1399
چکیده
Researchers have worked on many facets of joining of similar/dissimilar aluminum alloys using different joining techniques and came up with their own recommendations. Friction Stir Welding (FSW) is widely preferred for joining aluminum alloys being an economical alternative to produce high-quality welds. However, obtaining high strength welded joints without the detrimental and visible effects still needs attention considering the effect of hybrid FSW techniques, tool material and geometry, process parameters (tool rotation, welding speed, and plunge depth), and post welding treatments. This study presents the state of the art with the authors’ own inferences on the evaluation of FSW performances in terms of joint tensile strength, fatigue strength, corrosion resistance, residual stresses, microstructure, and microhardness. This study also presents attempts made by the researchers on modeling and parametric optimization of FSW to finding scope for application of advanced optimization techniques and development of predictive models for mechanical properties of welded joints. This study emphasizes more studies required on the comparative evaluation of FSW performance with the application of ultrasonic frequency combinedly or individually on advancing and retreating sides of plates.
کلیدواژهها
UVeFSW, Hybrid welding ؛ Aluminum alloy ؛ Tool geometry ؛ Post-weld treatments ؛ Optimization techniques
مراجع
[1] R. Kumar, R. Singh, I. P. S. Ahuja, R. Penna, and L. Feo, “Weldability of thermoplastic materials for friction stir welding- A state of art review and future applications,” Compos. Part B Eng. , Vol. 137, No. 1, pp. 1–15, (2018).
[7] Q. Chen, S. Lin, C. Yang, C. Fan, and H. Ge, “Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum,” Ultrason. Sonochem. , Vol. 39, No. 1, pp. 403–413, (2017).
[10] A. Fritzsche, K. Hilgenberg, F. Teichmann, H. Pries, K. Dilger, and M. Rethmeier, “Improved degassing in laser beam welding of aluminum die casting by an electromagnetic field,” J. Mater. Process. Technol. , Vol. 253, No. 1, pp. 51–56, (2018).
[12] Y. Wang, B. Qi, B. Cong, M. Zhu, and S. Lin, “Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding,” J. Manuf. Process. , Vol. 34(A), No. 1, pp. 179–186, (2018).
[13] D. Cai, S. Han, S. Zheng, Z. Luo, Y. Zhang, and K. Wang, “Microstructure and corrosion resistance of Al5083 alloy hybrid plasma-MIG welds,” J. Mater. Process. Technol. , Vol. 255, No. 1, pp. 530–535, (2018).
[14] H. Li, J. Zou, J. Yao, and H. Peng, “The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy,” J. Alloys Compd. , Vol. 727, No. 1, pp. 531–539, (2017).
[15] Y. Bai, H. M. Gao, L. Wu, Z. H. Ma, and N. Cao, “Influence of plasma-MIG welding parameters on aluminum weld porosity by orthogonal test,” Trans. Nonferrous Met. Soc. China (English Ed. , Vol. 20, No. 8, pp. 1392–1396, (2010).
[16] F. Li, W. Tao, G. Peng, J. Qu, and L. Li, “Behavior and stability of droplet transfer under laser-MIG hybrid welding with synchronized pulse modulations,” J. Manuf. Process. , Vol. 54, No. 1, pp. 70–79, (2020).
[23] Y. Miao, Z. Ma, X. Yang, J. Liu, and D. Han, “Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing,” J. Mater. Process. Technol. , Vol. 260, No. 1, pp. 104–111, (2018).
[25] J. D. M. Costa, J. S. Jesus, A. Loureiro, J. A. M. Ferreira, and L. P. Borrego, “Fatigue life improvement of mig welded aluminium T-joints by friction stir processing,” Int. J. Fatigue , Vol. 61, No. 1, pp. 244–254, (2014).
[33] J. T. Xiong, J. L. Li, J. W. Qian, F. S. Zhang, and W. D. Huang, “High strength lap joint of aluminium and stainless steels fabricated by friction stir welding with cutting pin,” Sci. Technol. Weld. Join. , Vol. 17, No. 3, pp. 196–201, (2012).
[35] G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, R. M. Leal, and A. Loureiro, “Explosive welding of aluminium to stainless steel,” J. Mater. Process. Technol. , Vol. 262, No. 1, pp. 340–349, (2018).
[37] P. Liu, S. Sun, S. Xu, Y. Li, and G. Ren, “Microstructure and properties in the weld surface of friction stir welded 7050-T7451 aluminium alloys by laser shock peening,” Vacuum , Vol. 152, No. 1, pp. 25–29, (2018).
[40] C. Xu, G. Sheng, X. Cao, and X. Yuan, “Evolution of Microstructure, Mechanical Properties and Corrosion Resistance of Ultrasonic Assisted Welded-Brazed Mg/Ti Joint,” J. Mater. Sci. Technol. , Vol. 32, No. 12, pp. 1253–1259, (2016).
[42] M. Shakil, N. H. Tariq, M. Ahmad, M. A. Choudhary, J. I. Akhter, and S. S. Babu, “Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints,” Mater. Des. , Vol. 55, No. 1, pp. 263–273, (2014).
[43] Z. Lei, J. Bi, P. Li, T. Guo, Y. Zhao, and D. Zhang, “Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy,” Opt. Laser Technol. , Vol. 105, No. 1, pp. 15–22, (2018).
[49] Z. Liu, X. Meng, S. Ji, Z. Li, and L. Wang, “Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding,” J. Manuf. Process. , Vol. 31, No. 1, pp. 552–559, (2018).
[55] S. Ji, X. Meng, Z. Liu, R. Huang, and Z. Li, “Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic,” Mater. Lett. , Vol. 201, pp. No. 1, 173–176, (2017).
[60] M. Thomä, G. Wagner, B. Straß, B. Wolter, S. Benfer, and W. Fürbeth, “Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints,” J. Mater. Sci. Technol. , Vol. 34, No. 1, pp. 163–172, (2018).
[64] W. Hou, Y. Shen, G. Huang, Y. Yan, C. Guo, and J. Li, “Dissimilar friction stir welding of aluminum alloys adopting a novel dual-pin tool: Microstructure evolution and mechanical properties,” J. Manuf. Process. , Vol. 36, No. 1, pp. 613–620, (2018).
[68] G. Chen, G. Wang, Q. Shi, Y. Zhao, Y. Hao, and S. Zhang, “Three-dimensional thermal-mechanical analysis of retractable pin tool friction stir welding process,” J. Manuf. Process. , Vol. 41, No. 1, pp. 1–9, (2019).
[86] D. Rao, K. Huber, J. Heerens, J. F. dos Santos, and N. Huber, “Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints,” Mater. Sci. Eng. A , Vol. 565, No. 1, pp. 44–50, (2013).
[88] Y. Huang, X. Meng, Y. Zhang, J. Cao, and J. Feng, “Micro friction stir welding of ultra-thin Al-6061 sheets,” J. Mater. Process. Technol. , Vol. 250, No. 1, pp. 313–319, (2017).
[90] M. Bahrami, N. Helmi, K. Dehghani, and M. K. B. Givi, “Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength,” Mater. Sci. Eng. A , Vol. 595, No. 1, pp. 173–178, (2014).
[92] Z. Liu, H. Zhang, H. Feng, Z. Yan, and P. Dong, “Effects of surface gradient nanostructuring on the fatigue behavior of the friction stir welded AlZnMgCu alloy,” Mater. Lett. , Vol. 252, No. 1, pp. 329–332, (2019).
[93] R. I. Rodriguez, J. B. Jordon, P. G. Allison, T. Rushing, and L. Garcia, “Low-cycle fatigue of dissimilar friction stir welded aluminum alloys,” Mater. Sci. Eng. A , Vol. 654, No. 1, pp. 236–248, (2016).
[94] I. Vysotskiy, S. Malopheyev, S. Rahimi, S. Mironov, and R. Kaibyshev, “Unusual fatigue behavior of friction-stir welded Al–Mg–Si alloy,” Mater. Sci. Eng. A , Vol. 760, No. 1, pp. 277–286, (2019).
[95] S. Guo, L. Shah, R. Ranjan, S. Walbridge, and A. Gerlich, “Effect of quality control parameter variations on the fatigue performance of aluminum friction stir welded joints,” Int. J. Fatigue , Vol. 118, No. 1, pp. 150–161, (2019).
[99] C. Deng, R. Gao, B. Gong, T. Yin, and Y. Liu, “Correlation between micro-mechanical property and very high cycle fatigue (VHCF) crack initiation in friction stir welds of 7050 aluminum alloy,” Int. J. Fatigue , Vol. 104, No. 1, pp. 283–292, (2017).
[100] M. Milčić, Z. Burzić, I. Radisavljević, T. Vuherer, D. Milčić, and V. Grabulov, “Experimental investigation of fatigue properties of FSW in AA2024-T351,” Procedia Struct. Integr. , Vol. 13, No. 1, pp. 1977–1984, (2018).
[105] B. B. Wang, F. F. Chen, F. Liu, W. G. Wang, P. Xue, and Z. Y. Ma, “Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling,” J. Mater. Sci. Technol. , Vol. 33, No. 9, pp. 1009–1014, (2017).
[106] S. Ma, Y. Zhao, J. Zou, K. Yan, and C. Liu, “The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219,” Opt. Laser Technol. , Vol. 96, No. 1, pp. 299–306, (2017).
[107] P. Avinash, M. Manikandan, N. Arivazhagan, R. K. Devendranath, and S. Narayanan, “Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys,” Procedia Eng. , Vol. 75, No. 1, pp. 98–102, (2014).
[108] M. M. Moradi, H. Jamshidi Aval, R. Jamaati, S. Amirkhanlou, and S. Ji, “Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061,” J. Manuf. Process. , Vol. 32, No. 1, pp. 1–10, (2018).
[113] D. Balaji Naik, C. H. Venkata Rao, K. Srinivasa Rao, G. Madhusudan Reddy, and G. Rambabu, “Optimization of friction stir welding parameters to improve corrosion resistance and hardness of AA2219 aluminum alloy welds,” Mater. Today Proc. , Vol. 15, No. 1, pp. 76–83, (2019).
[118] N. D. Nam, L. T. Dai, M. Mathesh, M. Z. Bian, and V. T. H. Thu, “Role of friction stir welding - Traveling speed in enhancing the corrosion resistance of aluminum alloy,” Mater. Chem. Phys. , Vol. 173, No. 1, pp. 7–11, (2016).
[121] G. D’Urso, C. Giardini, S. Lorenzi, M. Cabrini, and T. Pastore, “The influence of process parameters on mechanical properties and corrosion behaviour of friction stir welded aluminum joints,” Procedia Eng. , Vol. 207, No. 1, pp. 591–596, (2017).
[125] T. Sun, M. J. Roy, D. Strong, P. J. Withers, and P. B. Prangnell, “Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds,” J. Mater. Process. Technol. , Vol. 242, No. 1, pp. 92–100, (2017).
[127] Y. Zhan, Y. Li, E. Zhang, Y. Ge, and C. Liu, “Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding,” Appl. Acoust. , Vol. 145, No.1, pp. 52–59, (2019).
[128] S. El Mouhri, H. Essoussi, S. Ettaqi, and S. Benayoun, “Relationship between Microstructure, Residual Stress and Thermal Aspect in Friction Stir Welding of Aluminum AA1050,” Procedia Manuf. , Vol. 32, No.1, pp. 889–894, (2019).
[129] V. Richter-Trummer, E. Suzano, M. Beltrão, A. Roos, J. F. dos Santos, and P. M. S. T. de Castro, “Influence of the FSW clamping force on the final distortion and residual stress field,” Mater. Sci. Eng. A , Vol. 538, No. 1, pp. 81–88, (2012).
[130] T. Sun, A. P. Reynolds, M. J. Roy, P. J. Withers, and P. B. Prangnell, “The effect of shoulder coupling on the residual stress and hardness distribution in AA7050 friction stir butt welds,” Mater. Sci. Eng. A , Vol. 735, No. 1, pp. 218–227, (2018).
[135] M. S. Khorrami, M. Kazeminezhad, Y. Miyashita, N. Saito, and A. H. Kokabi, “Influence of ambient and cryogenic temperature on friction stir processing of severely deformed aluminum with SiC nanoparticles,” J. Alloys Compd. , Vol. 718, No. 1, pp. 361–372, (2017).
[136] M. S. Khorrami, M. Kazeminezhad, Y. Miyashita, N. Saito, and A. H. Kokabi, “Influence of ambient and cryogenic temperature on friction stir processing of severely deformed aluminum with SiC nanoparticles,” J. Alloys Compd. , Vol. 718, No. 1, pp. 361–372, (2017).
[139] Y. Wang, R. Fu, L. Jing, Y. Li, and D. Sang, “Grain refinement and nanostructure formation in pure copper during cryogenic friction stir processing,” Mater. Sci. Eng. A , Vol. 703, No. 1, pp. 470–476, (2017).
[141] N. Ferreira, J. S. Jesus, J. A. M. Ferreira, C. Capela, J. M. Costa, and A. C. Batista, “Effect of bead characteristics on the fatigue life of shot peened Al 7475-T7351 specimens,” Int. J. Fatigue , Vol. 134, No. 105521, (2020).
[146] M. W. Dewan, D. J. Huggett, T. Warren Liao, M. A. Wahab, and A. M. Okeil, “Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network,” Mater. Des. , Vol. 92, No. 1, pp. 288–299, (2016).
[151] T. A. Shehabeldeen, J. Zhou, X. Shen, Y. Yin, and X. Ji, “Comparison of RSM with ANFIS in predicting tensile strength of dissimilar friction stir welded AA2024 -AA5083 aluminium alloys,” Procedia Manuf. , Vol. 37, No. 1, pp. 555–562, (2019).
[165] A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Cam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, P.J. Withers, “Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution,” Progress in Materials Science , No. 100752, (2020).
آمار
تعداد مشاهده مقاله: 1,621
تعداد دریافت فایل اصل مقاله: 733