تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,878,479 |
تعداد دریافت فایل اصل مقاله | 2,086,104 |
A novel modification of decouple scaled boundary finite element method in fracture mechanics problems | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 10، دوره 7، شماره 2 - شماره پیاپی 14، خرداد 2018، صفحه 243-260 اصل مقاله (722.17 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2017.1853.1161 | ||
نویسنده | ||
Mahdi Yazdani* | ||
Arak University | ||
تاریخ دریافت: 06 شهریور 1395، تاریخ بازنگری: 02 آذر 1396، تاریخ پذیرش: 04 دی 1396 | ||
چکیده | ||
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this method, only the boundaries of problems are discretized using specific higher-order sub-parametric elements and higher-order Lagrange polynomials as mapping functions. Implementing the weighted residual method and using Gauss-Lobatto-Legendre numerical integration yield diagonal Euler’s differential equations. The chief modifications among the research conducted and the previous studies concerning DSBFEM is that here in, generation of geometry process of the functional interpolation, integration of the diverse is chosen, and by current technic, the difficulty of the DSBFEM is decreased. Therefore, when the local coordinates origin is located at the crack tip, the geometry of crack problems are implemented directly without further processing. Validity and accuracy of the proposed method are fully illustrated through three benchmark problems, whose results agree very well with those of other numerical and/or analytical solutions existing in the literature. | ||
کلیدواژهها | ||
Decoupled scaled boundary finite element method (DSBFEM)؛ Linear elastic fracture mechanics (LEFM)؛ Fracture parameters؛ Lagrange polynomials؛ Gauss-Lobatto-Legendre integration | ||
مراجع | ||
[1] M. L. Williams, “On the stress distribution at the base of a stationary crack”, Journal of Applied Mechanics,Vol. 24, No. 1, pp. 109-114, (1957). [2] D. Broek, Elementary engineering fracture mechanics, Springer, (1986). [3] S. Aoki, K. Kishimoto, H. Kondo, M. Sakata, “Elastodynamic analysis of crack by finite element method using singular element”, International Journal of Fracture,Vol. 14, No. 1, pp. 59-68, (1978). [4] M. R. Ayatollahi, M. Nejati, “An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis”, Fatigue and Fracture of Engineering Materials and Structures,Vol. 34, No. 3, pp. 159-176, (2011). [5] M. Bäker, “Finite element crack propagation calculation using trial cracks”, Computational Materials Science,Vol. 43, No. 1, pp. 179-183, (2008). [6] E. P. Chen, “Finite element analysis of a bimaterial interface crack”, Theoretical and Applied Fracture Mechanics,Vol. 3, No. 3, pp. 257-262, (1985). [7] H. G. Delorenzi, “Energy release rate calculations by the finite element method”, Engineering Fracture Mechanics,Vol. 21, No. 1, pp. 129-143, (1985). [8] R. D. Henshell, K.G. Shaw, “Crack tip finite elements are unnecessary”, International Journal for Numerical Methods in Engineering,Vol. 9, No. 3, pp. 495-507, (1975). [9] S. Mohammadi, Extended finite element method: for fracture analysis of structures, John Wiley & Sons, (2008). [10] K. Sharma, T.Q. Bui, C. Zhang, R.R. Bhargava, “Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method”, Engineering Fracture Mechanics,Vol. 104, pp. 114-139, (2013). [11] H. Pathak, A. Singh, I.V. Singh, S.K. Yadav, “Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM”, Frontiers of Structural and Civil Engineering,Vol. 9, No. 4, pp. 359-382, (2015). [12] Q. Z. Xiao, B. L. Karihaloo, “Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery”, International Journal for Numerical Methods in Engineering,Vol. 66, No. 9, pp. 1378-1410, (2006). [13] A. Portela, M. H. Aliabadi, D. P. Rooke, “Efficient boundary element analysis of sharp notched plates”, International Journal for Numerical Methods in Engineering,Vol. 32, No. 3, pp. 445-470, (1991). [14] A. Portela, M. H. Aliabadi, D. P. Rooke, “Dual boundary element incremental analysis of crack propagation”, Computers & Structures,Vol. 46, No. 2, pp. 237-247, (1993). [15] A. L. Saleh, M. H. Aliabadi, “Crack growth analysis in concrete using boundary element method”, Engineering Fracture Mechanics,Vol. 51, No. 4, pp. 533-545, (1995). [16] A. Ghorbanpoor, J. Zhang, “Boundary element analysis of crack growth for mixed-mode center slant crack problems”, Engineering Fracture Mechanics,Vol. 36, No. 5, pp. 661-668, (1995). [17] E. D. Leonel, W. S. Venturini, A. Chateauneuf, “A BEM model applied to failure analysis of multi-fractured structures”, Engineering Failure Analysis,Vol. 18, No. 6, pp. 1538-1549, (2011). [18] M. Treifi, S. O. Oyadiji, “Strain energy approach to compute stress intensity factors for isotropic homogeneous and bi-material V-notches”, International Journal of Solids and Structures, Vol. 50, No. 14-15,pp. 2196-2212, (2013). [19] G. Meneghetti, B. Atzori, A. Campagnolo, F. Berto, “A link between the peak stresses and the averaged strain energy density for cracks under mixed-mode (I+II) loading”, Frattura ed Integrita Strutturale,Vol. 9, No. 34, pp. 109-115, (2015) . [20] N. O. Larrosa, M. Treifi, R.A. Ainsworth, “Rapid parametric analysis of SEN(T) specimens using algorithmic modelling: Evaluation of strain energy density and notch stress intensity factors”, Materials and Design, Vol. 85, pp. 771-777, (2015). [21] P. Liu, T. Yu, T.Q. Bui, C. Zhang, “Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM”, Computational Materials Science,Vol. 69,pp. 542-558, (2013). [22] D. Racz, T.Q. Bui, “Novel adaptive meshfree integration techniques in meshlessmethods”, International Journal for Numerical Methods in Engineering,Vol. 90, No. 11, pp. 1414-1434, (2012). [23] B. N. Rao, S. Rahman, “Probabilistic fracture mechanics by Galerkin meshless methods - Part I: Rates of stress intensity factors”, Computational Mechanics,Vol. 28, 351-364, (2002). [24] N. T. Nguyen, T.Q. Bui, C. Zhang, T.T. Truong, “Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method”, Engineering Analysis with Boundary Elements,Vol. 44, pp. 87-97, (2014). [25] S. Rajagopal, N. Gupta, “Meshfree modelling of fracture-a comparative study of different methods, Meccanica”, Vol. 46, No. 5, pp. 1145-1158, (2011). [26] A. Asadpour, “Thermo-elastic extended meshfree method for fracture without crack tip enrichment”, Frontiers of Structural and Civil Engineering, Vol. 9, No. 6, pp. 441-447, (2015). [27] A. Y. T. Leung, R. K. L. Su, “Mode I crack problems by fractal two level finite element methods”, Engineering Fracture Mechanics,Vol. 48, 847-856, (1994). [28] J. Y. Liu, F. L. Xu, B. K. Ning, H. Fan, “Evaluation of the T-stress and the higher order terms of the elastic crack based on the SBFEM”, Advanced Materials Research,Vol. 838, pp. 2275-2278, (2014). [29] C. Song, J. P. “Wolf, Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method”, Computers and Structures,Vol. 80, No. 2, pp. 183-197, (2002). [30] S. R. Chidgzey, A. J. Deeks, “Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method”, Engineering Fracture Mechanics,Vol. 72, No. 13, pp. 2019-2036, (2005). [31] Z. J. Yang, E. T. Ooi, “Recent progress in modeling crack propagation using the scaled boundary finite element method”, International Journal of Computational Methods,Vol. 9, No. 1, pp. 1-24, (2012). [32] M. G. Shi, C. M. Song, H. Zhong, Y. J. Xu, C. H. Zhang, “A coupled SBFEM-FEM approach for evaluating stress intensity factors”,Applied Mechanics and Materials, Vol. 353, pp. 3369-3377, (2013). [33] G. E. Bird, J. Trevelyan, C. E. Augarde, “A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics”, Engineering Analysis with Boundary Elements,Vol. 34, No. 6, pp. 599-610, (2010). [34] B. N. Rao, S. Rahman, “A coupled meshless-finite element method for fracture analysis of cracks”, International Journal of Pressure Vessels and Piping,Vol. 78, No. 9, pp. 647-657, (2001). [35] S. R. Chidgzey, J. Trevelyan, A. J. Deeks, “Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics”, Computers and Structures,Vol. 86, No. 11-12, 1198-1203, (2008). [36] Y. T. Gu, L. C. Zhang, “Coupling of the meshfree and finite element methods for determination of the crack tip fields”, Engineering Fracture Mechanics,Vol. 75, No. 5, pp. 986-1004, (2008). [37] N. Khaji, M.I. Khodakarami, “A new semi-analytical method with diagonal coefficient matrices for potential problems”, Engineering Analysis with Boundary Elements,Vol. 35, No. 6, 845-854, (2011). [38] M. I. Khodakarami, N. Khaji, “Analysis of elastostatic problems using a semi-analytical method with diagonal coefficient matrices”, Engineering Analysis with Boundary Elements,Vol. 35, No. 12, pp. 1288-1296, (2011). [39] M. I. Khodakarami, N. Khaji, M. T. Ahmadi, “Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations”, Computer Methods in Applied Mechanics and Engineering,Vol. 213–216, No. 0, pp. 183-195, (2012). [40] N. Khaji, M. Yazdani, “Determination of stress intensity factors of 2D fracture mechanics problems through a new semi-analytical method”, Fatigue & Fracture of Engineering Materials & Structures,Vol. 39, No. 4, pp. 467-478, (2016). [41] M. Yazdani, N. Khaji, M. Khodakarami, “Development of a new semi-analytical method in fracture mechanics problems based on the energy release rate”, Acta Mechanica,Vol. 227, No. 12,pp. 3529-3547, (2016). [42] M. Yazdani, N. Khaji, M. Khodakarami, “Development of a new semi-analytical approach for 2D analysis of crack propagation problems”, Fatigue & Fracture of Engineering Materials & Structures,1-20, (2018). [43] M. I. Khodakarami, M. Fakharian, “A new modification in decoupled scaled boundary method with diagonal coefficient matrices for analysis of 2D elastostatic and transient elastodynamic problems”, Asian Journal of Civil Engineering,Vol. 16, No. 5, pp. 709-732, (2015). [44] F. Berto, P. Lazzarin, “On higher order terms in the crack tip stress field”, International Journal of Fracture,Vol. 161, No. 2, pp. 221-226, (2010). [45] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics,Vol. 35, No. 2, 379-386, (1968). [46] D. Nunez, K. S. Surana, A. Romkes, J. N. Reddy, “J-Integral for Mode I Linear Elastic Fracture Mechanics in h, p, k Mathematical and Computational Framework”, International Journal for Computational Methods in Engineering Science and Mechanics,Vol. 10, No. 5, pp. 345-369, (2009). [47] H. G. deLorenzi, “On the energy release rate and the J-integral for 3-D crack configurations”, International Journal of Fracture,Vol. 19, No. 3, pp. 183-193, (1982). [48] H. Tada, “Westergaard stress functions for several periodic crack problems”, Engineering Fracture Mechanics,Vol. 2, No. 2, pp. 177-180, (1970). [49] M. S. Chowdhury, C. Song, W. Gao, “Probabilistic fracture mechanics by using Monte Carlo simulation and the scaled boundary finite element method”, Engineering Fracture Mechanics,Vol. 78, No. 12, pp. 2369-2389, (2011). [50] T. K. Hellen, W. S. Blackburn, “The calculation of stress intensity factors for combined tensile and shear loading”, International Journal of Fracture,Vol. 11, No. 4, pp. 605-617, (1975). | ||
آمار تعداد مشاهده مقاله: 804 تعداد دریافت فایل اصل مقاله: 1,022 |