تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,877,858 |
تعداد دریافت فایل اصل مقاله | 2,085,740 |
Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 6، دوره 7، شماره 2 - شماره پیاپی 14، خرداد 2018، صفحه 199-207 اصل مقاله (1.59 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2017.1433.1114 | ||
نویسندگان | ||
Mehdi Jahangiri* 1؛ Mohsen Saghafian2؛ Mahmood Reza Sadeghi3 | ||
1Department of Mechanical Engineering, Faculty of Technical Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran | ||
2Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran | ||
3Department of Biomedical Engineering, University of Isfahan, Isfahan, 8174673441, Iran | ||
تاریخ دریافت: 22 فروردین 1395، تاریخ بازنگری: 03 تیر 1396، تاریخ پذیرش: 01 شهریور 1396 | ||
چکیده | ||
A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-sectional area of the artery. Six non-Newtonian models were used to model the non-Newtonian behavior of blood, and their results were compared with the Newtonian model. The results showed that in Power-law and Walburn-Schneck models, unlike other models, shear stress values before and after the stenosis were smaller than Newtonian models. Also, in maximum flow rate, the Carreua, generalized Power-law, Casson, and Carreua-Yasuda models showed a reduction in global importance factor of non-Newtonian behavior, and subsequently, the results approached Newtonian model. In minimum flow rate, the global importance factor of Newtonian behavior increased, which highlighted the importance of Newtonian model. In minimum flow rate, Carreua-Yasuda model was more sensitive to the non-Newtonian behavior of blood compared to Carreua, Casson, and Power-law models. Also, in that time period, Walburn-Schneck was less sensitive to the non-Newtonian behavior of blood. On the other hand, this model did not show sensitivity when the flow rate was at its peak. Power-law model overestimated the global importance factor values. Therefore, Power-law model was not suitable, because it showed extreme sensitivity to dimension. Walburn-Schneck model was not suitable too because it lacked sensitivity. | ||
کلیدواژهها | ||
Pulsatile flow؛ Non-Newtonian fluid؛ Stenosis؛ Important global factor | ||
مراجع | ||
[1] T. Bodnar, A. Sequeira, M. Prosi, “On the shear-thinning and viscoelastic effects of blood flow under various flow rates”, Applied Mathematics and Computation, Vol. 217, No. 11, pp. 5055-5067, (2011). [2] O. K. Baskurt, H. J. Meiselman, “Blood Rheology and Hemodynamics”, Seminars in Thrombosis and Hemostasis, Vol. 29, No. 5, pp. 435-450, (2003). [3] C. Fisher, J. S. Rossmann, “Effect of Non-Newtonian Behavior on Hemodynamics of Cerebral Aneurysms”, Journal of biomechanical engineering, Vol. 131, No. 9, 091004(1-9), (2009). [4] B. K. Lee, S. Xue, J. Nam, H. Lim, S. Shin, “Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models”, Korea-Australia Rheology Journal, Vol. 23, No. 1, pp. 1-6, (2011). [5] A. T. Golpayeghani, S. Najarian, M. M. Movahedi, “Numerical simulation of pulsatile flow with Newtonian and non-Newtonian behavior in arterial stenosis”, Iranian Cardiovascular Research Journal, Vol. 1, No. 3, pp. 167-174, (2008). [6] M. Lukacova-Medvidova, A. Zauskova, “Numerical modelling of shear thinning non-Newtonian flows in compliant vessels”, International journal for numerical methods in fluids, Vol. 56, No. 8, pp. 1409-1415, (2008). [7] A. Zauskova, M. Lukacova-Medvidova, “Numerical study of shear-dependent non-Newtonian fluids in compliant vessels”, Computers & Mathematics with Applications, Vol. 60, No. 3, pp. 572-590, (2010). [8] M. Jahangiri, M. Saghafian, M.R. Sadeghi, “Effects of non-Newtonian behavior of blood on wall shear stress in an elastic vessel with simple and consecutive stenosis”, Biomedical and Pharmacology Journal, Vol. 8, No. 1, pp. 123-131, (2015). [9] S. A. Berger, L. D. Jou, “Flows in stenotic vessels”, Annual Review of Fluid Mechanics, Vol. 32, pp. 347-382, (2000). [10] T. Ishikawa, L. F. R. Guimaraes, S. Oshima, R. Yamane, “Effect of non-Newtonian property of blood on flow through a stenosed tube”, Fluid dynamics research, Vol. 22, No. 5, pp. 251-264, (1998). [11] B. B. Mallik, S. Nanda, D. Das, D. Saha, D. S. Das, K. Paul, “A non-Newtonian fluid model for blood flow using power law through an atherosclerotic arterial segment having slip velocity”, International journal of pharmaceutical, chemical and biological sciences, Vol. 3, No. 3, pp. 752-760, (2013). [12] H. Jung, J. W. Choi, C. G. Park, “Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery”, Korea-Australia Rheology Journal, Vol. 16, No. 2, pp. 101-108, (2004). [13] S. Sapna, “Analysis of non-Newtonian fluid flow in a stenosed artery”, Int. J. Phys. Sci., Vol. 4, No. 11, pp. 663-671, (2009). [14] S. Amornsamankul, B. Wiwatanapataphee, Y. H. Wu, Y. Lenbury, “Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries”, International Journal of Biological and Medical Sciences, Vol. 1, No. 1, pp. 42-46, (2006). [15] T. J. Pedley, The fluid mechanics of large blood vessels, Cambridge University Press, (1980). [16] B. M. Johnston, P. R. Johnston, S. Corney, D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: Transient simulations”, Journal of biomechanics, Vol. 39, No. 6, pp. 1116-1128, (2006). [17] Theory and Modeling Guide, Volume III: ADINA CFD & FSI, Help of ADINA software, (2011). [18] Y. I. Cho, K. R. Kensey, “Effects of non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows”, Biorheology, Vol. 28, No. 3-4, pp. 241-262, (1991). [19] R. B. Bird, R. C. Armstrong, O. Hassager, Dynamics of polymerliquids, Wiley, New York, (1987). [20] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer, Berlin, (1993). [21] P. D. Ballyk, D. A. Steinman, C. R. Ethier, “Simulation of non-Newtonian blood flow in an end-to-end anastomosis”, Biorheology, Vol. 31, No. 5, pp. 565–586, (1994). [22] F. J. Walburn, D. J. Schneck, “A constitutive equation for whole human blood”, Biorheology, Vol. 13, No. 3, pp. 201–210, (1976). [23] M. Jahangiri, M. Saghafian, M.R. Sadeghi, “Numerical study of hemodynamic parameters in pulsatile turbulent blood flow in flexible artery with stenosis”, The 22st Annual International Conference on Mechanical Engineering-ISME2014, Shahid Chamran University, Ahvaz, Iran, (2014). [24] M. Jahangiri, M. Saghafian, M. R. Sadeghi, “Numerical simulation of hemodynamic parameters of turbulent and pulsatile blood flow in flexible artery with single and double stenosis”, Journal of Mechanical Science and Technology, Vol. 29, No. 8, pp. 3549-3560, (2015). [25] M. Jahangiri, M. Saghafian, M. R. Sadeghi, “Numerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction”, Computational and mathematical methods in medicine, Article ID 515613, (2015). [26] M. Jahangiri, M. Saghafian, M.R. Sadeghi, “Numerical simulation of non-Newtonian models effect on hemodynamic factors of pulsatile blood flow in elastic stenosed artery”, Journal of Mechanical Science and Technology, Vol. 31, No. 2, pp. 1003-1013, (2017). [27] W. W. Jeong, K. Rhee, “Effects of surface geometry and non-Newtonian viscosity on the flow field in arterial stenosis”, Journal of mechanical science and technology, Vol. 23, No. 9, pp. 2424-2433, (2009). [28] A. Razavi, E. Shirani, M. R. Sadeghi, “Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models”, Journal of biomechanic, Vol. 44, No. 11, pp. 2021-2030, (2011). [29] B. M. Johnston, P. R. Johnston, S. Corney, D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: steady state simulations”, Journal of biomechanic, Vol. 37, No. 5, pp. 709–720, (2004). [30] J. V. Soulis, G. D. Giannoglou, Y. S. Chatzizisis, K. V. Seralidou, G. E. Parcharidis, G. E. Louridas, “Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery”, Medical engineering & physics, Vol. 30, No. 1, pp. 9-19, (2008). [31] P. F. Davies, “Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology”, Nature clinical practice Cardiovascular medicine, Vol. 6, No. 1, pp. 16-26, (2008). [32] M. Papadaki, G. E. Suzanne, R. Johannes, S. R. Marschall, V. M. Larry, “Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities”, Diabetes research and clinical practice, Vol. 45, No. 2-3, pp. 89-99, (1999). [33] U. Olgac, V. Kurtcuoglu, D. Poulikakos, “Computational modeling of coupled blood-wall mass transport of LDL: effect of local wall shear stress”, American Journal of Physiology-Heart and Circulatory Physiology, Vol. 249, No. 2, pp. 909-919, (2008). | ||
آمار تعداد مشاهده مقاله: 1,445 تعداد دریافت فایل اصل مقاله: 1,618 |