تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,878,459 |
تعداد دریافت فایل اصل مقاله | 2,086,079 |
Heat transfer in MHD nanofluid flow over a cone and plate in the presence of heat source/sink | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 9، دوره 7، شماره 2 - شماره پیاپی 14، خرداد 2018، صفحه 223-241 اصل مقاله (979.22 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2017.637 | ||
نویسندگان | ||
Sandeep Naramgari؛ Raju C.S.K؛ Jagadeesh Kumar M.S* | ||
Vellore Institute of Technology | ||
تاریخ دریافت: 27 اسفند 1394، تاریخ بازنگری: 26 فروردین 1395، تاریخ پذیرش: 31 مرداد 1395 | ||
چکیده | ||
In this study, we presented a mathematical model for analyzing the heat source/sink effect on magnetohydrodynamic two-dimensional ferrofluid flow past a cone and a vertical plate in the presence of volume fraction of ferrous nanoparticles. The governing partial differential equations are transformed as ordinary differential equations making use of similarity solutions and solved numerically with the aid of Runge-Kutta based shooting technique. The limiting case of the present results shows a good agreement with the published results. We presented solutions for the flow over a cone and a vertical plate cases. The influence of dimensionless parameters on velocity and temperature profiles along with the friction factor coefficient and the heat transfer rate are analyzed with the help of graphs and tables. It is found that the rising value of the volume fraction of ferrous nanoparticles enhances the friction factor coefficient and heat transfer rate. It is also found that heat transfer performance of the flow over a plate is comparatively higher than the flow over a cone. | ||
کلیدواژهها | ||
MHD؛ Convection؛ Heat source/sink؛ Ferrofluid؛ Cone/Plate | ||
مراجع | ||
[1] C. L. Tien, “Heat transfer by laminar flow from a rotating cone”, ASME Journal of Heat Transfer, Vol. 82, No. 3, pp. 252-253, (1960).
[2] M. Kumari, I. Pop, G. Nath, “Mixed convection along a vertical cone”, International Communications in Heat Mass Transfer, Vol. 16, No. 2, pp. 247-255, (1989).
[3] A. J. Chamka, “Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects”, Numerical Heat Transfer, Part-A: Applications: An International Journal of Computational Methods, Vol. 39, No. 5, pp. 511-530, (2001).
[4] S. Nadeem, S. Saleem, Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame, Journal of the Taiwan Institute of Chemical Engineers, Vol. 44, No. 4, pp. 596-604, (2013).
[5] F. O. Patrulescu, T. Grosan, I. Pop, “Mixed convection boundary layer flow from a vertical truncated in a nanofluid”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24, No. 5, pp. 1175-1190, (2014).
[6] S. Saleem, S. Nadeem, R. UI Haq, “Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone”, European Physical Journal Plus, Vol. 129, No. 10, pp. 213, (2014).
[7] B. Rushikumar, R. Sivaraj, “Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity”, International Journal of Heat and Mass Transfer, Vol. 56, No. 1-2, pp. 370-379, (2013).
[8] C. S. K. Raju, M. Jayachandrababu, N. Sandeep, “Chemically reacting raidiative MHD Jeffery nanofluid flow over a cone in porous medium”, International Journal of Engineering Research In Africa, Vol. 19, pp. 75-90, (2016).
[9] Chakravarthula S. K. Raju, Naramgari Sandeep, “Dual solutions for unsteady heat and mass transfer in Bio-convection flow towards a rotating cone/plate in a rotating fluid”, International Journal of Engineering Research In Africa, Vol. 20, pp. 161-176, (2016).
[10] C. S. K. Raju, N. Sandeep, “Heat and mass transfer in MHD non-Newtonian bio-Convection flow over a rotating cone/plate with cross diffusion”, Journal of Molecular Liquids, Vol. 215, pp. 115-126, (2016).
[11] C. Scherer, A. M. Figueiredo Neto, “Ferrofluids: Properties and Applications”, Brazilian Journal of Physics, Vol. 35, No. 3A, pp. 718-727, (2005).
[12] C. S. K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, “Effects of aligned magnetic field and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink”, International journal of Science and Engineering, Vol. 8, No. 2, pp. 151-158, (2015).
[13] I. L. Animasaun, “Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation, Ain Shams Engineering Journal, (2015), http://dx.doi.org/10.1016/j.asej.2015.06.010.
[14] W. A. Khan, Z. H. Khan, R. U. Haq, “Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux”, The European Physical Journal, Vol. 130, No. 86, (2015).
[15] C. S. K. Raju, M. Jayachandrababu, N. Sandeep, P. Mohankrishna, “Influence of non-uniform heat source/sink on MHD nanofluid flow over a moving vertical plate in porous medium”, International Journal of Science and Engineering Research., Vol. 6, No. 9, pp. 31-42, (2015).
[16] M. Sheikholeslami, M. G. Bandpy, “Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field”, Powder Technology, Vol. 256, pp. 490-498, (2014).
[17] D. Anilkumar, S. Roy, “Unsteady mixed convection flow on a rotating cone in a rotating fluid”, Applied Maths Computation, Vol. 155, No. 2, pp. 545-561, (1963).
[18] V. Sugunamma, J. V. Ramanareddy, N. Sandeep, C. S. K. Raju, “Chemically reacting MHD dusty nanofluid flow over a vertical cone with non-uniform heat source/sink”, Walailak Journal of Science and Technology, Vol. 14, (2017).
[19] Chakravarthula SK Raju, Naramgari Sandeep, “Heat and mass transfer in 3D non-Newtonian nano and Ferrofluids over a bidirectional stretching surface”, International Journal of Engineering Research in Africa, Vol. 21, pp. 33-51, (2015).
[20] N. Sandeep, C. Sulochana, C. S. K. Raju, V. Sugunamma, “Unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and time dependent internal heat source/sink”, Applications and Applied Mathematics, an international journal, Vol. 10, No. 1, pp. 312-327, (2015).
[21] I. L. Annimasun, C. S. K. Raju, N. Sandeep, “Unequal diffusivities case of homogeneous-heterogeneous reactions within viscoelastic fluid flow in the presence of induced magneticfield and nonlinear thermal radiation”, Alexandria Engineering journal, (2016) In press, http://dx.doi.org/10.1016/j.aej.2016.01.018.
[22] J. V. Ramanareddy, V. Sugunamma, N. Sandeep, C. S. K. Raju, M. Jayachandrababu, “Induced magnetic field effect on stagnation point flow of magnetonanofluids towards a stretching sheet”, Advance Science, Engineering and Medicine, Vol. 7, No. 11, pp. 968-974, (2015).
[23] F. Mabood, W. A. Khan, A. I. M. Ismail, “MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study”, J. Magnetism and Magnetic Materials, Vol. 374, pp. 569-576, (2015).
[24] Z. H. Khan, W. A. Khan, M. Qasim, I. AliShah, “MHD stagnation point ferrofluid flow and heat transfer towards a stretching sheet”, IEEE Transactions on Nanotechnology, Vol. 13, No. 1, pp. 35-40, (2014).
[25] L. S. Rani Titus, A. Abraham, “Heat transfer in ferrofluid flow over a stretching sheet with radiation”, International Journal of Engineering Research and Technology, Vol. 3, No. 6, (2014).
[26] N. Sandeep, C. Sulochana, “MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles”, Alexandria Engineering Journal, Vol. 7, No. 2, 709-716, (2015). | ||
آمار تعداد مشاهده مقاله: 2,639 تعداد دریافت فایل اصل مقاله: 1,741 |