تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,877,258 |
تعداد دریافت فایل اصل مقاله | 2,085,040 |
Derivation of turbulent energy in a rotating system | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 7، دوره 3، شماره 1، اسفند 2013، صفحه 75-83 اصل مقاله (730.49 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2013.61 | ||
نویسنده | ||
S. F. Ahmed* | ||
Prime University, Mirpur-1, Dhaka-1216, Bangladesh | ||
تاریخ دریافت: 05 دی 1391، تاریخ بازنگری: 03 تیر 1392، تاریخ پذیرش: 11 تیر 1392 | ||
چکیده | ||
Energy equation for turbulent flow in a rotating system was derived in terms of second order correlation tensors, where the correlation tensors were functions of space coordinates, distance between two points and time. To reveal the relationship of turbulent energy between two points, one point was taken as origin of the coordinate system. Due to rotation, the Coriolis force played an important role in the rotating system of turbulent flow. The correlation between pressure fluctuations and velocity fluctuations at the two points of flow field was applied to the turbulent energy equation, in which the Coriolis force and centrifugal force acted on the fluid. | ||
کلیدواژهها | ||
Energy equation؛ Turbulent Flow؛ Rotating system؛ Two-point correlation؛ Correlation tensor | ||
مراجع | ||
[1] Johansen, T. Henning and H. Klahr, “Dust sedimentation and self-sustained Kelvin-Helmholtz turbulence in protoplanetary disk midplanes”, The Astrophysical Journal, Vol. 643, pp. 1219-1232, (2006).
[2] T. Crowe, T. R. Troutt and J. N. Chung, “Numerical models for two-phase turbulent flows”, Annual Review of Fluid Mechanics, Vol. 28, pp. 11-43, (1996).
[3] A. Davidson, “Long-range interactions in turbulence and the energy decay problem”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, pp. 796-810, (2011).
[4] A. Luketina and J. Imberger, “Determining turbulent kinetic energy dissipation from batchelor curve fitting”, Journal of Atmospheric and Oceanic Technology, Vol. 18, pp. 100-113, (2001).
[5] Lorke and A. Wüest, “Application of coherent ADCP for turbulence measurements in the bottom boundary Layer”, Journal of Atmospheric and Oceanic Technology, Vol. 22, pp. 1821-1828, (2005).
[6] N. Moum, “Energy-containing scales of turbulence in the ocean thermocline”, Journal of Geophysical Research, Vol. 101, pp. 14095-14110, (1996).
[7] Bourouiba, D. N. Straub and M. L. Waite, “Non-local energy transfers in rotating turbulence at intermediate Rossby number”, Journal of Fluid Mechanics, Vol. 690, pp. 129-147, (2012).
[8] B. Saito and M. J. S. de Lemos, “A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media”, International Journal of Heat and Mass Transfer, Vol. 35, pp. 2424-2433, (2010).
[9] Abid and R. Habibi, “Analysis of Reynolds stress equations for stratified rotating homogeneous shear flow”, International Journal of Engineering Science, Vol. 41, pp. 1869-1881, (2003).
[10] Kolvin, K. Cohen, Y. Vardi, and E. Sharon, “Energy transfer by inertial waves during the buildup of turbulence in a rotating system”, Physical Review Letters, Vol. 102, 014503:1-4, (2009).
[11] S. A. Sarker and M. A. K. Azad, “Decay of temperature fluctuations in homogeneous turbulence before the final period for the case of multi-point and multi-time in a rotating system”, Bangladesh Journal of Scientific and Industrial Research, Vol. 41, pp. 147-158, (2006).
[12] Morinishi, K. Nakabayashi and S. Q. Ren. “A new DNS algorithm for rotating homogeneous decaying turbulence”, International Journal of Heat and Fluid Flow, Vol. 22, pp. 30-38, (2001).
[13] Teitelbaum and P. D. Mininni, “The decay of turbulence in rotating flows”, Physics of Fluids, Vol. 23, pp. 065105:1-15, (2011).
[14] Liechtenstein, F. S. Godeferd and C. Cambon, “Time evolution of structures in rotating and stratified turbulence”, Flow Turbulence Combust, Vol. 76, pp. 419-427, (2006).
[15] Lamriben, P. Cortet and F. Moisy, “Anisotropic energy transfers in rotating turbulence”, Journal of Physics: Conference Series, Vol. 318, pp. 042005:1-6, (2011).
[16] O. Hinze, Turbulence, 2nd ed., McGraw-Hill Co., New York, pp. 27-135, (1975).
[17] F. Ahmed and M. S. A. Sarker, “Fiber suspensions in turbulent flow with two-point correlation”, Bangladesh Journal of Scientific and Industrial Research, Vol. 46, pp. 265-270, (2011).
[18] R. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements”, Journal of Physical Oceanography, Vol. 10, pp. 83-89, (1980).
[19] Kishore and M. S. Alam Sarker, “Rate of change of vorticity covariance of MHD turbulence in a rotating system”, Astrophysics and Space Science, Vol. 172, No. 2, pp. 279-284, (1990).
[20] S. A. Sarker and S. F. Ahmed, “Motion of fibers in turbulent flow in a rotating system”, Rajshahi University Studies, Part-B, Journal of Science, Vol. 37, pp. 107-117, (2009). | ||
آمار تعداد مشاهده مقاله: 2,497 تعداد دریافت فایل اصل مقاله: 1,516 |