تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,878,061 |
تعداد دریافت فایل اصل مقاله | 2,085,904 |
Approximate solution of laminar thermal boundary layer over a thin plate heated from below by convection | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 5، دوره 2، شماره 2، شهریور 2013، صفحه 45-57 اصل مقاله (1023 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2013.52 | ||
نویسندگان | ||
Aminreza Noghrehabadi* ؛ Mohammad Ghalambaz؛ Amin Samimi | ||
Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
تاریخ دریافت: 11 اردیبهشت 1391، تاریخ بازنگری: 08 دی 1391، تاریخ پذیرش: 17 دی 1391 | ||
چکیده | ||
In this paper, an integration of a symbolic power series method - Padé approximation technique (PS - Padé), was utilized to solve a system of nonlinear differential equations arising from the similarity solution of laminar thermal boundary layer over a flat plate subjected to a convective surface boundary condition. As both boundary conditions tended to infinity, the combination of series solutions with the Padé approximants was used for handling boundary conditions on the semi-infinite domain of solution. The combination of power series and Padé proposed an alternative approach of solution which did not require small parameters and avoided linearization and physically unrealistic assumptions. The results of the present approach were compared with numerical results as well as those of previous works reported in the literature. The obtained results represented remarkable accuracy in comparison with the numerical ones. Finally, reduced Nusselt number, as an important parameter in heat transfer, was calculated by the obtained analytical solution. The present power series-Padé technique was very simple and effective, which could develop a simple analytic solution for flow and heat transfer over the flat plate. The results of the present study could be easily used in practical applications. | ||
کلیدواژهها | ||
Symbolic power series؛ Padé؛ Flat plate؛ Convective boundary condition | ||
مراجع | ||
[1] H. Blasius, “Grenzschichten in Flussigkeiten mit kleiner Reibung”, Z. Math. Physik, Vol. 56, pp. 1-37, (1908).
[2] B. C. Sakiadis, “Boundary layer behavior on continuous solid surfaces: I. The boundary layer equations for two dimensional and axisymmetric flow”, American Institute of Chemical Engineers, Vol. 7, pp. 26-28, (1961).
[3] L. E. Erickson, L. T. Fan and V. G. Fox, “Heat and mass transfer on a moving continuous flat plate with suction or injection”, Industrial & Engineering Chemistry Fundamentals, Vol. 5, No. 1, pp. 19-25, (1966).
[4] L. J. Crane, “Flow past a stretching plate”, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), Vol. 21, No. 4, pp. 645-647, (1970).
[5] P. S. Gupta and A. S. Gupta, “Heat and mass transfer with suction and blowing”, The Canadian Journal of Chemical Engineering, Vol. 55, No. 6, pp. 744-746, (1977).
[6] A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, “Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature”, International Journal of Thermal Sciences, Vol. 54, pp. 253-261, (2012).
[7] A. Noghrehabadi, M. Ghalambaz, M. Ghalambaz and A. Ghanbarzadeh, “Comparing thermal enhancement of Ag-water and SiO2-water nanofluids over an isothermal stretching sheet with suction or injection”, Journal of Computational and Applied Research in Mechanical Engineering, Vol. 2, No.1, pp. 35-47, (2012).
[8] A. Noghrehabadi, M. Ghalambaz and A. Ghanbarzadeh, “Heat transfer of magnetohydrodynamic Viscous nanofluids over an isothermal stretching Sheet”, Journal of Thermophysics and Heat Transfer, Vol. 26, No. 4, pp. 686-689, (2012).
[9] F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley, New York, (2007).
[10] A. Bejan, Convective Heat Transfer, 3rd ed., John Wiley & Son, New York, (2004).
[11] W. M. Kays and M. E. Crawford, Convective heat and mass transfer, 3rd ed., McGraw Hill, New York, (1980).
[12] J. J. Shu and I. Pop, “On thermal boundary layers on a flat plate subjected to a variable heat flux”, Int. J. Heat Fluid Flow, Vol. 19, pp. 79-84, (1988).
[13] A. Aziz, “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition”, Commun. Nonlinear Sci. Numer. Simul., Vol. 14, pp. 1064-1068, (2009).
[14] A. Ishak, “Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition”, Applied Mathematics and Computation, Vol. 217, pp. 837-842, (2010).
[15] E. Magyari, “Comment on A similarity solution for laminar thermal boundary layer over a flat plate with convective surface boundary condition”, by A. Aziz, Comm. Nonlinear Sci. Numer. Simul. 2009; 14; 1064-8, Commun.”, Nonlinear Sci. Numer. Simulat., Vol. 16, pp. 599-601, (2011).
[16] R. C. Bataller, “Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition”, Appl. Math. Comput., Vol. 206, pp. 832-840, (2008).
[17] E. Pohlhausen, “Der wärmeaustausch zwischen festen körpern und flüssigkeiten mit kleiner reibung und kleiner wärmeleitung”, Z. Angew. Math. Mech., Vol. 1, pp. 115-121, (1921).
[18] K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-value Problems in Differential-Algebraic, North-Holland, Amsterdam, (1989).
[19] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, Berlin, (1991).
[20] N. Guzel and M. Bayram, “On the numerical solution of differential-algebraic equations with index-3”, Applied Mathematics and Computation, Vol. 175, pp. 1320-1331, (2006).
[21] E. Celik and M. Bayram, “Arbitrary order numerical method for solving differential-algebraic equation by Padé series”, Applied Mathematics and Computation, Vol. 137, pp. 57-65, (2003).
[22] E. Celik and M. Bayram, “The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs)”, Journal of the Franklin Institute, Vol. 342, pp. 1-6, (2005).
[23] N. Guzel and M. Bayram, “Numerical solution of differential algebraic equations with index-2”, Applied Mathematics and Computation, Vol. 174, pp. 1279-1289, (2006).
[24] N. Henrici, Applied Computational Complex Analysis, Vol. 1, Wiley, New York, (1974).
[25] G. Corliss and Y. F. Chang, “Solving ordinary differential equations using Taylor series”, ACM Trans. Math., Vol. 8, pp. 114-144, (1982).
[26] H. Hirayama, “Arbitrary order and A stable numerical method for solving algebraic ordinary differential equation by power series”, 2nd International Conference on Mathematics and Computers in Physics.;Vouliagmeni, Athens, Greece, (2000).
[27] H. Simsek and E. Celik, “The successive approximation method and Padé approximants for solutions the non-linear boundary value problem”, App. Math. Comput., Vol. 146, pp. 681-690, (2003).
[28] A. M. Wazwaz, “Analytical approximations and Pade approximations for Volterras population model”, App. Math. Comput., Vol. 100, pp. 13-25, (1999).
[29] M. M. Rashidi and E. Erfani, “A new analytical study of MHD stagnation-point flow in porous media with heat transfer”, Computers & Fluids, Vol. 40, pp. 172-178, (2011).
[30] H. Chu, Y. Zhao and Y. Liu, “A MAPLE package of new ADM-Padé approximate solution for nonlinear problems”, Applied Mathematics and Computation, Vol.12., p. 085, (2010)
[31] U. Ascher, R. Mattheij and R. Russell, “Numerical Solution of Boundary Value Problems for Ordinary Differential Equations”, SIAM Classics in Applied Mathematics, Vol. 13, pp. 327-357, (1995).
[32] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, (1998).
[33] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, (1992).
[34] S. J. Liao, Beyond Perturbation: An Introduction to Homotopy Analysis Method, Chapman Hall/CRC Press, Boca Raton, (2003).
[35] L. Howarth, “On the solution of the laminar boundary layer equation”, Proc. RSoc. Lond. A., Vol. 164, pp. 547-579, (1938).
[36] S. J. Liao, “A uniformly valid analytic solution of 2-D viscous flow over a semi-infinite flat plate”, J. Fluid. Mech., Vol. 385, pp. 101-128, (1999).
[37] F. Ahmad and W. H. Al-Barakati, “An approximate analytic solution of the Blasius problem”, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, pp. 1021-1024, (2009).
[38] J. LIN, “A New Approximate Iteration Solution of Blasius Equation”, Communications in Nonlinear Science & Numerical Simulation, Vo1. 4, No. 2, pp. 91-94, (1999).
[39] V. M. Soundalgekar, “Combined free and forced convection flow past a semi-infinity vertical plate with variable surface temperature”, Nuclear Engineenng and Design, Vol. 110, pp. 95-98, (1988).
[40] G. Wilks, “Heat transfer coefficients for combined forced and free convection flow about a semi-infinity isothermal plate”, Int. J. Hear Mass Tranrfer, Vol. 19, pp. 951-953, (1976). | ||
آمار تعداد مشاهده مقاله: 3,022 تعداد دریافت فایل اصل مقاله: 1,710 |