تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,878,077 |
تعداد دریافت فایل اصل مقاله | 2,085,911 |
Generalized solution of functionally graded hollow cylinder under torsional load | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 3، دوره 2، شماره 2، شهریور 2013، صفحه 23-32 اصل مقاله (1.03 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2013.50 | ||
نویسندگان | ||
Y. Bayat1؛ M. Alizadeh* 2؛ A. Bayat3 | ||
1Young Researchers Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran | ||
2Department of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran | ||
3Department of Mechanical Engineering Isfahan University of Technology, Isfahan, Iran | ||
تاریخ دریافت: 18 خرداد 1391، تاریخ بازنگری: 20 آبان 1391، تاریخ پذیرش: 29 آبان 1391 | ||
چکیده | ||
In this paper, a general solution for torsion of hollow cylinders made of functionally graded materials (FGM) was investigated. The problem was formulated in terms of Prandtl’s stress and, in general, the shear stress and angle of twist were derived. Variations in the material properties such as Young’s modulus and Poisson’s ratio might be arbitrary functions of the radial coordinate. Various material models from the literature were also used and the corresponding shear stress and angle of twist were individually computed. Moreover, by employing ABAQUS simulations, finite element results were compared with the analytical ones. | ||
کلیدواژهها | ||
Functionally graded material؛ Hollow cylinder؛ Torsion؛ Finite element method؛ Arbitrarily varying gradients | ||
مراجع | ||
[1] P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, (1970).
[2] M. Baron, “Torsion of Multi-Connected Thin-Walled Cylinders”, J. Appl. Mech, Vol. 9, pp. 72-74,(1942).
[3] Li, J. M. Ko and Y. Q. Ni, “Torsional Rigidity of Reinforced Concrete Bars with Arbitrary Sectional Shape”, Finite Elem. Anal Des. Vol. 35, pp. 349-361, (2000).
[4] Mejak, “Optimization of cross-section of hollow prismatic bars in torsion”, Communications in Numerical Methods in Engineering, Vol. 16, pp. 687-695, (2000).
[5] G. Jiang and J. L. Henshall, “A coupling cross-section finite element model for torsion analysis of prismatic bars”, Eur. J. Mech. A/Solids, Vol. 21, pp. 513-522, (2002).
[6] Louis Angelo and M. Ryan, “Torsion of a rectangular prismatic bar: Solution using a power fit model”, Philippine Engineering Journal, Vol. 28, No. 1, pp. 77-98, (2007).
[7] Doostfatemeh, M. R. Hematiyan and S. Arghavan, “Closed-form approximate formulations for torsional analyses of hollow tube with straight and circular edges”, Journal of Mechanics, Vol. 25, pp. 401-409, (2009).
[8] Koizumi, “The concept of FGM”. Composites Part B, Vol. 28(B), pp. 1-4, (1993).
[9] Suresh and A. Mortensen, Fundamentals of functionally graded materials, Cambridge Publication, London, (1998).
[10] O. Horgan and A. M. Chan, “The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials”. J. Elasticity, Vol. 55, No. 1, pp. 43-59, (1999).
[11] K. Kassir, “Boussinesq problems for a nonhomogeneous solid”, J. Engng. Mech., Vol. 98, pp. 457-470, (1972).
[12] K. Kassir and M. F. Chauprasert, “A rigid punch in contact whit a non-homogeneous solid”, J. Appl. Mech., Vol. 42, pp. 1019-1024, (1974).
[13] Tutuncu, “Stresses in thick-walled FGM cylinders with exponentially-varying properties”, Eng. Struct. Vol. 29, pp. 2032-35, (2007).
[14] O. Horgan and A. M. Chan, “Torsion of functionally graded isotropic linearly elastic bars”, J. Elasticity, Vol. 52, pp. 181-199, (1999).
[15] A. Moeini and M. T. Ahmadian, “Structural Analysis of Stiffened FGM Thick Walled Cylinders by Application of a New Cylindrical Super Element”, World Academy of Science, Engineering and Technology, Vol. 58, pp. 116-121, (2009).
[16] Arghavan and M. R. Hematiyan, “Torsion of functionally graded hollow tubes”, European Journal of Mechanics A/Solids, Vol. 28, pp. 551-559, (2009).
[17] Ecsedi, “A formula for the generalized twist”, Int. J. Solids Struct., Vol. 41, pp. 4097-4105, (2004).
[18] C. Batra, “Torsion of a functionally graded cylinder”, AIAA J., Vol. 44, pp. 1363-1365, (2006).
[19] Tutuncu and B. Temel, “A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres”, Composite Structures, Vol. 91, pp. 385-390, (2009).
[20] F. Li and X. L. Peng, “A Pressurized Functionally Graded Hollow Cylinder with Arbitrarily Varying Material Properties”, J. Elast, Vol. 96, pp. 81-95, (2009).
[21] L. Peng and X. F. Li, “Thermoelastic analysis of a cylinder vessel of functionally graded materials”, International journal of pressure vessels and piping, Vol. 87, pp. 203-210, (2010).
[22] J. Nie, Z. Zhong and R. C. Batra, “Material tailoring for orthotropic elastic rotating disks”, Composites Science and Technology, Vol. 71, pp. 406-14, (2011).
[23] Sadd, Elasticity theory, applications, and numerics, 2ed ed., Burlington, MA01803, USA, (2009).
[24] M. Liew, X. Q. He, T. Y. Ng and S. Kitipornchai, “Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators”, Comput. Mech., Vol. 31, pp. 350-58, (2003).
[25] H. Jin and R. C. Batra, “Some basic fracture mechanics concepts in functionally graded materials”, J. Mech. Phys. Solids, Vol. 44, pp. 1221-1235, (1996).
[26] S. Ravi and I. Barsoum, “Determination of stress intensity factor solutions for cracks in finite-width functionally graded materials”, International Journal of Fracture, Vol. 121, pp. 183-203, (2003).
[27] Bayat, M. Ghannad and H. Torabi, “Analytical and Numerical Analysis for the FGM Thick Sphere under Combined Pressure and Temperature Loading”, Arch. Appl. Mech., Vol. 82, pp. 229-242, (2012). | ||
آمار تعداد مشاهده مقاله: 2,666 تعداد دریافت فایل اصل مقاله: 2,177 |