تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,878,006 |
تعداد دریافت فایل اصل مقاله | 2,085,884 |
Differences between Wiener and modified Wiener indices | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 3، دوره 4، 1-2، شهریور 2014، صفحه 19-25 اصل مقاله (724.28 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2014.479 | ||
نویسندگان | ||
Mardjan Hakimi-Nezhaad؛ Modjtaba Ghorbani | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran | ||
تاریخ دریافت: 08 مهر 1392، تاریخ بازنگری: 06 بهمن 1392، تاریخ پذیرش: 02 خرداد 1393 | ||
چکیده | ||
The Wiener index is the oldest topological index introduced by H. Wiener for anticipating the boiling point of Paraffin and some other alkenes. An algebraic approach for generalizing the Wiener index is proposed by Graovac and Pisanski for the first time. In this paper, we compute the difference between these topological indices for a class of fullerene graphs. | ||
کلیدواژهها | ||
Wiener index؛ Molecular graph؛ automorphism of graph | ||
مراجع | ||
[1] A. Behmaram, Matching in fullerene and molecular graphs, Ph. D thesis, University of Tehran, 2013. [2] M. Deza, M. Dutour Sikirić and P. W. Fowler, Zigzags, railroads, and knots in fullerenes, J. Chem. Inf. Comp. Sci. 44 (2004) 1282-1293. [3] M. Deza and M. Dutour Sikirić, Zigzag structure of complexes, Southeast Asian Bull. Math. 29 (2005) 301. [4] M. Dutour Sikirić and M. Deza, Space fullerenes: computer search for new Frank-Kasper structures II, Structural Chemistry, 23 (2012) 1103-1114. [5] M. Dutour Sikirić, O. Delgado-Friedrichs, and M. Deza, Space fullerenes: computer search for new Frank-Kasper structures, Acta Crystallogr. A, 66 (2010) 602-615. [6] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995. [7] M. Ghorbani, Fullerene graphs with pentagons and heptagons, J. Math. Nanosci. 3 (2013) 33-37. [8] M. Ghorbani and T. Ghorbani, Computing the Wiener index of an infinite class of fullerenes, Studia Ubb Chemia LVIII (2013) 43. [9] M. Ghorbani and M. Songhori, Computing Wiener index of C12n Fullerenes, Ars. Combin. (accepted). [10] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53. [11] J. E. Graver, Catalog of all fullerenes with ten or more symmetries, Graphs and discovery, 167188, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 Amer. Math. Soc., Providence, RI, 2005. [12] I. Gutman, W. Linert, I. Lukovits and A. A. Dobrynin, Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997) 349-354. [13] I. Gutman and L. Šoltés, The range of the Wiener index and its mean isomer degeneracy, Z. Naturforsch., 46a (1991) 865-868. [14] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969. [15] D. J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52. [16] F. Koorepazan-Moftakhar, A. R. Ashra9i, Distance under Symmetry, Match, 75 (2015) 259-272. [17] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: buckminsterfullerene, Nature 318 (1985) 162-163. [18] H. J. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17-20. | ||
آمار تعداد مشاهده مقاله: 2,155 تعداد دریافت فایل اصل مقاله: 623 |