تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,101 |
تعداد مشاهده مقاله | 2,882,723 |
تعداد دریافت فایل اصل مقاله | 2,089,827 |
A note on eccentric distance sum | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 6، دوره 2، 1-2، شهریور 2012، صفحه 37-41 اصل مقاله (251.26 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2012.470 | ||
نویسنده | ||
Mahin Songhori | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran | ||
تاریخ دریافت: 13 آذر 1390، تاریخ بازنگری: 02 اسفند 1390، تاریخ پذیرش: 22 اردیبهشت 1391 | ||
چکیده | ||
The eccentric distance sum is a graph invariant defined as $\sum_{uv\in E} εG(v)DG(v)$, where εG(v) is the eccentricity of a vertex v in G and DG(v ) is the sum of distances of all vertices in G from v. In this paper, we compute the eccentric distance sum of Volkmann tree and then we obtain some results for vertex−transitive graphs | ||
کلیدواژهها | ||
Eccentricity؛ eccentric distance sum؛ Volkmann tree | ||
مراجع | ||
[1]. A. R. Ashra i, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, Journal of Computational and Applied Mathematics, 235 (2011), 4561 – 4566.
[2] T. Doslić, M. Ghorbani and M. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Utilitas Mathematica, 84 (2011), 297-309.
[3] M. Ghorbani, Connective eccentric index of fullerenes, J. Math. NanoSci., 1 (2011), 43–52.
[4] M. Songhori, ccentric connectivity index of fullerene graphs, J. Math. NanoSci., 2 (2011), 21–27.
[5] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: Anovel highly discriminating topological descriptor for structure-property andstructureactivity studies, J. Chem. Inf. Model., 37 (1997), 273 – 282.
[6] S. Gupta, M. Singh and A.K. Madan, Eccentric distance sum: a novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl., 275 (2002), 386 – 401.
[7] A. Ilić, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl., 381 (2011), 590 – 600.
[8] B. E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, Int. J. Quantum. Chem., 60 (1996), 959 – 969.
[9] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996. | ||
آمار تعداد مشاهده مقاله: 1,999 تعداد دریافت فایل اصل مقاله: 720 |