تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,101 |
تعداد مشاهده مقاله | 2,882,712 |
تعداد دریافت فایل اصل مقاله | 2,089,822 |
Eccentric connectivity index of fullerene graphs | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 4، دوره 2، 1-2، شهریور 2012، صفحه 21-27 اصل مقاله (355.22 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2012.467 | ||
نویسنده | ||
Mahin Songhori | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran | ||
تاریخ دریافت: 15 دی 1390، تاریخ بازنگری: 16 اردیبهشت 1391، تاریخ پذیرش: 12 خرداد 1391 | ||
چکیده | ||
The eccentric connectivity index of the molecular graph is defined as $\zeta^c(G)=\sum_{uv\in E}degG(u)ε(u)$ , where degG(x) denotes the degree of the vertex x in G and ε(u)=max{d(x,u) |x ε V(G)}. In this paper this polynomial is computed for an infinite class of fullerenes. | ||
کلیدواژهها | ||
eccentric connectivity index؛ eccentricity connectivity polynomial؛ fullerene | ||
مراجع | ||
1. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc.,69 (1947), 17-20.
2. B. Zhou and Z. Du, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem., 63(1) (2010), 101 – 112.
3. V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies, J. Chem. Inf. Comput. Sci., 37 (1997), 273– 282.
4. A. Dobryninand A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem., Inf., Comput. Sci., 34(1994), 1082 – 1086.
5. S. Gupta, M. Singh and A. K. Madan, Connective eccentricity Index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model.,18 (2000), 18 – 25.
6. A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, Journal of Computational and Applied Mathematics, 235(16) (2011), 4561-4566.
7. M. Ghorbani, Connective Eccentric Index of Fullerenes, J. Math. Nano. Sci., 1 (2011), 43 – 52.
8. A. R. Ashrafi and M. Ghorbani, Eccentric Connectivity Index of Fullerenes, In: I. Gutman, B. Furtula, Novel Molecular Structure Descriptors – Theory and Applications II, (2008), pp.183 – 192.
9. T. Doslić, M. Ghorbani and M. A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Utilitas Mathematica, 84 (2011), 297 – 309.
10. H. W. Kroto and J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162 – 163.
11. H. W. Kroto, J. E. Fichier and D. E. Cox, The fulerene, Pergamon Press, New York, 1993.
12. N. Trinajstić and I. Gutman, Mathematical Chemistry, Croat. Chem. Acta, 75 (2002), 329 – 356.
13. The Hyper Chem package, Release 7.5 for Windows, Hypercube Inc., Florida, USA, 2002.
14. 17. M. V. Diudea, O. Ursu and Cs. L. Nagy, TOPOCLUJ, Babes-Bolyai University, Cluj, 2002.
15. The GAP Team: GAP, Groups, Algorithms and Programming, RWTH, Aachen, 1995. | ||
آمار تعداد مشاهده مقاله: 2,126 تعداد دریافت فایل اصل مقاله: 810 |