تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,091 |
تعداد مشاهده مقاله | 2,849,604 |
تعداد دریافت فایل اصل مقاله | 2,064,066 |
The PI and vertex PI polynomial of dendimers | ||
Journal of Discrete Mathematics and Its Applications | ||
مقاله 7، دوره 1، 1-2، شهریور 2011، صفحه 59-65 اصل مقاله (310.26 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jmns.2011.464 | ||
نویسنده | ||
Mohammad Ali Salahshour* | ||
Department of Science, Islamic Azad University, Savadkooh Branch, Savadkooh, Mazandaran, I. R. Iran | ||
تاریخ دریافت: 13 دی 1389، تاریخ بازنگری: 17 بهمن 1389، تاریخ پذیرش: 24 اسفند 1389 | ||
چکیده | ||
Let G be a simple connected graph. The vertex PI polynomial of G is defined as PIv(G ,x )=Σe=uv Xnu(e)+nv(e) here nu(e) is the number of vertices closer to u than v and nv(e) is the number of vertices closer to v than u. The PI polynomial of G is defined as PI(G ,x )=Σe=uv Xmu(e)+mv(e) , where mu(e) is the number of edges closer to u than v and mv(e) is the number of edges closer to v than u. In this paper, the PI and vertex PI polynomials of two types of dendrimers are computed. | ||
کلیدواژهها | ||
PI polynomial؛ vertex PI polynomial؛ Szeged index | ||
مراجع | ||
REFERENCES 1. A. R. Ashrafi, M. Ghorbani and M. Jalali, The vertex PI and Szeged polynomials of an in inite family of fullerenes, J. Theor. Comput. Chem., 2 (2008), 221-231. 2. M.V. Diudea, I. Gutman and L. Jantschi, Molecular Topology, Huntington, NY, (2001).
3. G. H. Fath-Tabar, T. Doslic and A. R. Ashrafi, On the Szeged and the Laplacian Szeged spectrum of a graph, Linear Algebra Appl., 433 (2010), 662-671.
4. G. H. Fath-Tabar, M. J. Nadjafi-Arani, M. Mogharrab and A. R. Ashrafi, Some inequalities for zeged-like topological indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010), 145-150.
5. G. H. Fath-Tabar, B. Furtula and I. Gutman, A new geometric-arithmetic index, J. Math. Chem., 47 (2010), 477 – 48.
6. I. Gutman, L. Popovic, P. V. Khadikar, S. Karmarkar, S. Joshi and M. Mandloi, Relations between Wiener and Szeged indices of monocyclic molecules, MATCH Commun. Math. Comput. Chem., 35 (1997), 91-103.
7. I. Gutman, P. V. Khadikar and T. Khaddar: Wiener and Szeged indices of benzenoid hydrocarbons containing a linear polyacene fragment, MATCH Commun. Math. Comput. Chem.,35 (1997), 105-116.
8. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, Linear Algebra Appl., 429 (2008), 2702-2709.
9. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math., 156 (2008), 1780-1789.
10. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math., 10 (2008), 1780-1789.
11. S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Applied Mathematics Letters, 9 (1996), 45-49.
12. M. Mogharrab and G. H. Fath-Tabar, Some Bounds on GA1 Index of Graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 33-38.
13. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17–20.
14. G. H. Fath-Tabar, Old and new Zagreb index, MATCH Commun. Math. Comput. Chem., 65 (2011), 79-84.
15. G. H. Fath-Tabar, Zagreb Polinomial and PI Indices of Some Nano Structurs,Digest Journal of Nanomaterials and Biostructures, 4 (2009), 189-191.
16. B. Manoochehrian, H. Yousefi-Azari and A. R. Ashrafi, PI Polynomial of Some Benzenoid Graphs, MATCH Commun. Math. Comput. Chem., 57 (2007),653-664.
17. M. V. Diudea, Omega Polynomial in All R[8] Lattices, Irnian. J. Math. Chem., 1(1)(2010), 69-77.
18. H. Mohamadinezhad-Rashti and H. Yousefi-Azari, Some New Results On the Hosoya Polynomial of Graph Operations, Iranian. J. Math. Chem.,1(2)(2010), 37-43.
19. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, Onszeged polynomial of a graph, Bull. Iranian Math. Soc., 33 (2007), 37-46.
20. G. H. Fath-Tabar and A. R. Ashrafi, The Hyper-Wiener Polynomial of Graphs, Iranian J. Math. Sci. Inf., 6 (2) (2011), 67–74. | ||
آمار تعداد مشاهده مقاله: 22,293 تعداد دریافت فایل اصل مقاله: 400 |