
تعداد نشریات | 11 |
تعداد شمارهها | 217 |
تعداد مقالات | 2,173 |
تعداد مشاهده مقاله | 3,124,012 |
تعداد دریافت فایل اصل مقاله | 2,266,341 |
Applying evolutionary optimization on the airfoil design | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 6، دوره 2، شماره 1، اسفند 2012، صفحه 51-62 اصل مقاله (341.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2012.46 | ||
نویسندگان | ||
Abolfazl Khalkhali*1؛ Hamed Safikhani2 | ||
1School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran | ||
2Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran | ||
تاریخ دریافت: 22 تیر 1391، تاریخ بازنگری: 23 تیر 1391، تاریخ پذیرش: 25 تیر 1391 | ||
چکیده | ||
In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial neural networks, modified non-dominated sorting genetic algorithm (NSGAII) was used for Pareto based optimization of 4-digit NACA airfoils considering two conflicting objectives such as (CL) and (CD). Further evaluations of the design points in the obtained Pareto fronts using the NUMECA software showed the effectiveness of such an approach. Moreover, it was shown that some interesting and important relationships as the useful optimal design principles involved in the performance of the airfoils can be discovered by the Pareto-based multi-objective optimization of the obtained polynomial meta-models. Such important optimal principles would not have been obtained without using the approach presented in this paper. | ||
کلیدواژهها | ||
Multi-objective Optimization؛ GMDH؛ Genetic Algorithm؛ 4-Digit NACA Airfoils؛ NUMECA | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 2,519 تعداد دریافت فایل اصل مقاله: 1,483 |