تعداد نشریات | 11 |
تعداد شمارهها | 208 |
تعداد مقالات | 2,090 |
تعداد مشاهده مقاله | 2,829,605 |
تعداد دریافت فایل اصل مقاله | 2,049,117 |
The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology) | ||
Journal of Electrical and Computer Engineering Innovations (JECEI) | ||
مقاله 6، دوره 2، شماره 1 - شماره پیاپی 3، فروردین 2014، صفحه 37-42 اصل مقاله (470.03 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jecei.2014.45 | ||
نویسندگان | ||
M.R. Pishgoo1؛ M.R. N. Avanaki* 2؛ R. Ebrahimpour3 | ||
1Digital Communications Signal Processing (DCSP) Research Lab., Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran. | ||
2Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA | ||
3Brain& Intelligent Systems Research Lab., Department of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran | ||
تاریخ دریافت: 05 آذر 1392، تاریخ بازنگری: 20 فروردین 1393، تاریخ پذیرش: 11 خرداد 1393 | ||
چکیده | ||
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is modeled using Rayleigh distribution with the noise parameter, sigma, estimated by the ensemble framework. The input to the framework is a set of intensity and wavelet statistical features computed from the input image, and the output is the estimated sigma value for the noise model. In this article the methodology of this technique is explained. | ||
کلیدواژهها | ||
Optical Coherence Tomography (OCT)؛ Speckle redaction؛ Neural Network؛ Multi-Layer Perceptron؛ Mean Squared Error (MSE) | ||
مراجع | ||
[1] M. Nasiriavanaki, Adrian GhPodoleanu, John B. Schofield, Carole Jones, Manu Sira, Yan Liu, and Ali Hojjat. "Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem." Applied Optics Journal, Vol. 52, No. 8, pp. 1574‐1580, 2013. [2] Mohammad R. N. Avanaki, Adrian Gh. Podoleanu, Mark C. Price, Serena A. Corr, and S. A. Hojjatoleslami, “Two applications of solid phantoms in performance assessment of optical coherence tomography systems,” Applied Optics Journal, Vol. 52, No. 29, pp. 7054‐7061, 2013.
[3] Mohammad R. N. Avanaki, Ali Hojjatoleslami, Mano Sira, John B. Schofield, Carole Jones, and Adrian GhPodoleanu. "Investigation of basal cell carcinoma using dynamic focus optical coherence tomography." Applied Optics, Vol. 52, No. 10, pp. 2116‐2124, 2013.
[4] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications. Roberts & Co, 2006.
[5] M. R. N. Avanaki, P. Philippe Laissue, and Ali Hojjatoleslami. "De‐noising speckled optical coherence tomography images using an algorithm based on artificial neural network." Journal of Neuroscience and Neuroengineering, Vol. 2, No. 4, pp. 347‐ 352, 2013.
[6] P. A. Magnin, O. T. von Ramm, and F. L. Thurstone, "Frequency compounding for speckle contrast reduction in phased array images," Ultrason. Imaging, Vol. 4, pp. 267‐281, 1982.
[7] Mohammad R. N. Avanaki, P. Philippe Laissue, Tae JoongEom, Adrian Gh. Podoleanu, and Ali Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Applied Optics Journal, Vol.52, No. 21, pp. 5050‐5057, 2013.
[8] T. M. Jorgensen, L. Thrane, M. Mogensen, F. Pedersen, and P. E. Andersen, “Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method,” Proc. SPIE. 6627, 66270P, 2007.
[9] N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Bio. Opt. Vol. 8, pp. 260–263, 2003. [10] R. K. Wang, "Reduction of speckle noise for optical coherence tomography by the use of nonlinear anisotropic diffusion," Proc. SPIE. 5690, pp. 380‐385, 2005.
[11] Mohammad R. N. Avanaki, R. Cernat, Paul J. Tadrous, TaranTatla, Adrian Gh. Podoleanu, and S. Ali Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photonics Technology Letters, Vol. 25, No. 15, pp.1439, 2013.
[12] A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography images using digital filtering," Scanning, Vol. 20, pp. 27‐30, 2007.
[13] P. Puvanathasan, K. Bizheva, “Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set,” Optics Express, Vol. 15, No. 24, pp. 15747‐ 15758, 2007.
[14] Mohammad R.N. Avanaki, P.P. Laissue, A. Gh. Podoleanu, and A. Hojjatoleslami, "Evaluation of wavelet mother functions for speckle noise suppression in OCT images," International Journal on Graphics, Bioinformatics and Medical Engineering, Vol. 11, Issue 1, pp. 1‐5, 2011.
[15] D. A. Nix, A. S. Weigend, “Estimating the Mean and Variance of the Target Probability Distribution," Proc. of the IEEE Int. Conf. on Neural Networks (IEEE‐ICNN'94), pp. 55‐60, 1994. [16] H. Schioler, P. Kulczycki, “Neural Network for Estimating Conditional Distributions," IEEE Trans. Neural Networks, Vol.8, No. 5, pp. 1015‐1025,1997.
[17] M. R. Nasiriavanaki, Jun Xia, Hanlin Wan, Adam Quentin Bauer, Joseph P. Culver, and Lihong V. Wang. "High‐resolution photoacoustic tomography of resting‐state functional connectivity in the mouse brain." Proceedings of the National Academy of Sciences, Vol. 111, No. 1 pp. 21‐26, 2014.
[18] M. R. Nasiri‐Avanaki, Reza Ebrahimpour. "In‐service video quality measurements in optical fiber links based on neural network." Neural Network World 17.5 (2007): 457. | ||
آمار تعداد مشاهده مقاله: 2,548 تعداد دریافت فایل اصل مقاله: 1,687 |