تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,101 |
تعداد مشاهده مقاله | 2,884,051 |
تعداد دریافت فایل اصل مقاله | 2,091,225 |
Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقاله 1، دوره 5، شماره 1، اسفند 2015، صفحه 1-11 اصل مقاله (1.41 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2015.340 | ||
نویسندگان | ||
B. Asmar1؛ M. Karimi* 1؛ F. Nazari1؛ A. Bolandgerami2 | ||
1Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran | ||
2Center of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran | ||
تاریخ دریافت: 02 اسفند 1393، تاریخ بازنگری: 29 فروردین 1394، تاریخ پذیرش: 06 اردیبهشت 1394 | ||
چکیده | ||
Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a novel procedure is considered to identify the locations and depths of cracks in the multi-cracked variable cross-section beam using natural frequency variations of the beam based on artificial neural network and particle swarm optimization algorithm. In the proposed crack identification algorithm, four distinct neural networks are employed for the identification of locations and depths of both cracks. Back error propagation and particle swarm optimization algorithms are used to train the networks. Finally, the results of these two methods are evaluated. | ||
کلیدواژهها | ||
Modal analysis؛ Multiple crack identification؛ Variable cross section beam؛ Artificial neural network | ||
مراجع | ||
[1] Douka E, Loutridis S, Trochidis A. Crack identification in beams using wavelet analysis. Int. J. Solid. Struct 2003; 40(13-14):3557-3569.
[2] Dimarogonas AD. Vibration of cracked structures: A state of the art review. Eng. Fract. Mech 1996; 55(5):831-857.
[3] Dimarogonas, A.D.: Vibration Engineering. West Publishers, St Paul, Minnesota (1976).
[4] Paipetis, S.A., Dimarogonas, A.D.: Analytical methods in rotor dynamics, Elsevier Applied Science, London (1986).
[5] Adams AD, Cawley P. The location of defects in structures from measurements of natural frequencies. J. Strain. Anal 1979; 14(2):49-57.
[6] Chondros TG, Dimarogonas AD. Identification of cracks in welded joints of complex structures. J. -Sound. Vib 1980; 69(11):531-538.
[7] Goudmunson P. Eigenfrequency change of structures: a state of the art review. Eng. Fract. Mech 1982; 55(5):831-857.
[8] Shen MHH, Taylor JE. An identification problem for vibrating cracked beams. J. Sound. Vib 1991, 150(3):457-484.
[9] Masoud A, Jarrad MA, Al-Maamory M. Effect of crack depth on the natural frequency of a prestressed fixed-fixed beam. J. Sound. Vib 1998; 214(2):201-212.
[10] Sekhar AS. Multiple cracks effects and identification. Mech. Syst. Signal. Proc 2008; 22(4):845-878.
[11] Lee J. Identification of multiple cracks in a beam using natural frequencies. J. Sound. Vib 2009, 320, 482-490.
[12] Patil DP, Maiti, S.K., Detection of multiple cracks using frequency measurements. Eng. Fract. Mech, 70, 1553-1572, 2003.
[13] Mazanoglu K, Yesilyurt I, Sabuncu M. Vibration analysis of multiple-cracked non-uniform beams. J. Sound. Vib 2009; 320(4-5):977-989.
[14] Binici B. Vibration of beams with multiple open cracks subjected to axial force. J. Sound. Vib 2005; 287(1-2); 277-295.
[15] Khiem NT, Lien TV. A simplified method for natural frequency analysis of a multiple cracked beam. J. Sound. Vib 2001; 245(4):737-751.
[16] Cam E, Sadettin O, Murat L. An analysis of cracked beam structure using impact echo method, NDT. E. Int 2008; 38(5):368-373.
[17] Wu X, Ghaboussi J, Garret Jr JH. Use of neural networks in detection of structural damage. Comput. Struct 1992; 42(4): 649-659.
[18] Wang BS, He ZC Crack detection of arch dam using statistical neural network based on the reductions of natural frequencies. J. Sound. Vib 2007; 302(4-5):1037-1047.
[19] Kao CY, Hung SL. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Comput. Struct 2003; 81(28-29):2631-2644.
[20] ANSYS Release 8.0. ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317.
[21] McClelland JL and Rumelhart DE. Parallel distributed processing: Explorations in the Microstructure of Cognition. Volumes I and II, MIT Press, 1986.
[22] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc Neural Networks. Proceedings, vol. 1944. IEEE International Conference on, 1995. p. 1942–1948.
[23] The Mathworks inc. Version 2009 a. MATLAB. | ||
آمار تعداد مشاهده مقاله: 2,396 تعداد دریافت فایل اصل مقاله: 2,537 |