تعداد نشریات | 11 |
تعداد شمارهها | 208 |
تعداد مقالات | 2,090 |
تعداد مشاهده مقاله | 2,829,674 |
تعداد دریافت فایل اصل مقاله | 2,049,144 |
An Improved Time-Reversal-Based Target Localization for Through-Wall Microwave Imaging | ||
Journal of Electrical and Computer Engineering Innovations (JECEI) | ||
مقاله 4، دوره 1، شماره 2، مهر 2013، صفحه 89-97 اصل مقاله (704.46 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jecei.2013.28 | ||
نویسندگان | ||
A. B. Gorji* ؛ B. Zakeri | ||
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran | ||
تاریخ دریافت: 05 آبان 1392، تاریخ بازنگری: 07 آذر 1392، تاریخ پذیرش: 13 آذر 1392 | ||
چکیده | ||
Recently, time reversal (TR) method, due to its high functionality in heterogeneous media has been widely employed in microwave imaging (MI) applications. One of the applications turning into a great interest is through-wall microwave imaging (TWMI). In this paper, TR method is applied to detect and localize a target obscured by a brick wall using a numerically generated data. Regarding this, it is shown that when the signals acquired by a set of receivers are time reversed and backpropagated to the target-embedded media, finding the optimum time frame which the constituted image represents a true location of the target becomes infeasible. Indeed, there are situations pertinent to the target distance ratio that the previously-used Maximum field method and Entropy-based methods may fail to select the optimum time frame. As a result, an improved method which is based on initial reflection from the target is proposed. According to different target locations described in this research, the results show this method prevails over the shortcomings of the former methods. | ||
کلیدواژهها | ||
Finite-difference time-domain؛ Optimum focusing؛ Target distance ratio؛ Target initial reflection؛ Through-wall microwave imaging؛ Time reversal | ||
مراجع | ||
[1] M. G. Amin and F. Ahmad, (2012, Sep., 27), Through-the-wall radar imaging: theory and applications, Villanova Univ., Villanova, PA.
[2] R. Zetik, S. Crabbe, J. Krajnak, P. Peyerl, J. Sachs, and R. Thoma, “Detection and localization of person behind obstacles using M-sequence through-the-wall radar,” in Proc. SPIE , 2006, vol. 6201.
[3] M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1589-1599, Jun. 2008.
[4] K. M. Yemelyanov, N. Engheta, A. Hoorfar, and J. A. McVay, “Adaptive polarization contrast techniques for through-wall microwave imaging applications,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1362-1374, May 2009.
[5] F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1192-1199, Apr. 2008.
[6] S. Kidera, T. Sakamoto, and T. Sato, “High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars,” IEEE Trans. Antennas Propag., vol. 57, no. 11, pp. 3521-3529, Nov. 2009.
[7] A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Time reversal effects in random scattering media on superresolution, shower curtain effects, and backscattering enhancement.” Radio Sci., vol. 42, 2007.
[8] M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys., vol. 63, pp. 1933–1995, 2000.
[9] G. Micolau, M. Saillard, and P. Borderies, “DORT method as applied to ultrawideband signals for detection of buried objects,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 8, pp. 1813-1820, Aug. 2003.
[10] H. T. Nguyen, J. B. Andersen, G. F. Pedersen, P. Kyritsi, and P. C. F. Eggers, “Time reversal in wireless communications: a measurement-based investigation,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2242-2252, Aug. 2006.
[11] P. Kosmas and C. M. Rappaport, “Time reversal with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 7, pp. 2317-2323, Jul. 2005.
[12] Y. Chen, E. Gunawan, K. S. Loon, S. Wang, C. B. Soh, and T. C. Putti, “Time-reversal ultrawideband breast imaging: pulse design criteria considering multiple tumors with unknown tissue properties,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 3073-3077, Sep. 2008.
[13] W. Zheng, Z. Zhao, and Z. Nie, “Application of TRM in the UWB through wall radar,” PIER,vol. 87, pp. 279-296, 2008. [14] A. Cresp, I. Aliferis, M. J. Yedlin, Ch. Pichot, and J. Y. Dauvignac, “Investigation of time-reversal processing for surfacepenetrating radar detection in a multiple-target configuration,” in Proc. 5th European Radar Conference, Amsterdam, The Netherland, Oct. 2008.
[15] W. Zhang and A. Hoorfar, and L.Li, “Through-the-wall target localization with time reversal MUSIC method ,” PIER, vol. 106, pp. 75-89, 2010.
[16] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Boston, MA: Artech House, 2005.
[17] J. P. Stang, “A 3D active microwave imaging system for breast cancer screening ,” Ph.D. dissertation, Dept. Elec. Eng., Duke Univ., Durham, NC, 2008.
[18] M. Yavuz and F. L. Teixeira, “Full time-domain DORT for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media,” IEEE Trans. Antennas Propag., vol. 54, no. 8, pp. 2305-2315, Aug. 2006.
[19] A. J. Devaney, “Time reversal imaging of obscured targets from multistatic data,” IEEE Trans. Antennas Propag., vol. 53, no. 5, pp. 1600-1610, May 2005.
[20] J. F. Moura and Y. Jin, “Time reversal imaging by adaptive interference canceling,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 233-247, Jan. 2006.
[21] P. Kosmas and C. M. Rappaport, “A matched-filter FDTD-based time reversal approach for microwave breast cancer detection,” IEEE Trans. Antennas Propag., vol. 54, no. 4, pp. 1257-1264, Apr. 2006.
[22] N. Maaref, P. Millot, and X. Ferrieres, C.Pichot, and O. Picon, “Electromagnetic imaging method based on time reversal processing applied to through-the-wall target localization,” PIER,vol. 1, pp. 59-67, 2008.
[23] D. Liu, J. Krolik, and L. Carin, “Electromagnetic target detection in uncertain media: time-reversal and minimum-variance algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 934-944, Apr. 2007.
[24] I. Scott, “Developments in time-reversal of electromagnetic fields using the transmission-line modeling method,” Ph.D. dissertation, School of Elec. and Electron. Eng., Univ. of Nottingham, Nottingham, UK, 2009.
[25] D. Liu, G. Kang, L. Li, Y. Chen, S. Vasudevan, W. Joines, Q. H. Liu, J. Krolik, and L. Carin, “Electromagnetic time-reversal imaging of a target in a cluttered environment,” IEEE Trans. Antennas Propag., vol. 53, no. 9, pp. 3058-3066, Sep. 2005.
[26] G. Montaldo, P. Roux, A. Derode, C. Negreira, and M. Fink, “Ultrasonic shock wave generator using 1-bit time-reversal in a dispersive medium: application to lithotripsy,” Appl. Phys. Lett., vol.80, pp. 897–899, 2002.
[27] C. Thajudeen, A. Hoorfar, and F. Ahmad, “Measured complex permittivity of walls with different hydration levels and the effect on power estimation of TWRI target returns,” PIER,vol. 30, pp. 177-199, 2011.
[28] M. Yavuz and F. L. Teixeira, “Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves,” IEEE Geosci. Remote Sens. Lett., vol. 2, no.2, pp. 233-237, Apr. 2005.
[29] J. D. Taylor, Ultrawideband Radar: Applications and Design, CRC Press, 2012. | ||
آمار تعداد مشاهده مقاله: 2,632 تعداد دریافت فایل اصل مقاله: 1,995 |