
تعداد نشریات | 11 |
تعداد شمارهها | 226 |
تعداد مقالات | 2,279 |
تعداد مشاهده مقاله | 3,451,038 |
تعداد دریافت فایل اصل مقاله | 2,517,229 |
تحلیل عملکرد رف نوری در ترکیب با پنجره در بهبود شرایط آسایش بصری و کارآیی انرژی در فضای آموزشی (موردپژوهی: آتلیه معماری دانشگاه آزاد اسلامی اصفهان) | ||
معماری و شهرسازی پایدار | ||
مقاله 3، دوره 12، شماره 2 - شماره پیاپی 24، دی 1403، صفحه 33-53 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22061/jsaud.2024.10562.2200 | ||
نویسندگان | ||
زهرا شریفیان1؛ نرگس دهقان* 2؛ مهدی حمزه نژاد3؛ زهراسادات زمردیان4 | ||
1دانشجوی دکتری، گروه معماری، مرکز تحقیقات افقهای نوین در معماری و شهرسازی، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران. | ||
2استادیار، گروه معماری، مرکز تحقیقات افقهای نوین در معماری و شهرسازی، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران. | ||
3استادیار، گروه معماری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
4استادیار، دانشکده معماری و شهرسازی، دانشگاه شهید بهشتی، تهران، ایران. | ||
تاریخ دریافت: 11 دی 1402، تاریخ بازنگری: 07 آذر 1403، تاریخ پذیرش: 18 مرداد 1403 | ||
چکیده | ||
مقدمه: در دهههای اخیر، ملاحظات محیطی و همچنین لزوم کاهش مصرف انرژی سبب شده است که استفاده از نور طبیعی در ساختمانها به عنوان یکی از جنبههای اصلی طراحی مطرح شود. استفاده مناسب از نور روز در فضاهای آموزشی باعث افزایش بهرهوری انرژی و تأثیر مثبت بر عملکرد، تمرکز و کیفیت یادگیری دانش آموزان می شود. بنابراین، دستیابی به فضایی که هم دغدغههای آسایش بصری و هم صرفهجویی در مصرف انرژی را برآورده کند، نیاز به اتخاذ راهبردهای های طراحی یا اصلاحی دارد که نور روز را فراهم و کنترل نماید. از این رو هدف پژوهش حاضر، بررسی بهبود شرایط آسایش بصری مرتبط با نور روز و کارآیی انرژی در یک آتلیه معماری منتخب شهر اصفهان، با به کارگیری سیستم رف نوری در ترکیب با پنجره به عنوان راهبرد اصلاحی است. روش تحقیق: فرایند انجام این پژوهش شامل: 1. شناسایی متغیرهای رف نوری و جداره نور گذر، 2. اجرای فرایند شبیه سازی روشنایی و انرژی، 3. تعیین میزان تأثیر متغیرها بر توابع هدف (دریافت نور مناسب و کاهش مصرف انرژی) با استفاده از آنالیز حساسیت، اجرای فرایند بهینه سازی و استخراج مدل های بهینه است. نتایج و بحث: یافته ها نشان داد که طراحی بهینه رف نوری در ترکیب با پنجره، تأثیر قابل توجهی در بهبود آسایش بصری و کارآیی انرژی در فضای آموزشی در اقلیم شهر اصفهان داشت. نتیجه گیری: با مقایسه نتایج شبیه سازی مدل پایه و برخی از پاسخ های بهینه، می توان مشاهده نمود که استفاده از رف نوری در این اقلیم و جبهه جنوب شرقی، منجر به بهبود شاخص نو روز (SUDI) به میزان 36.10، 37.50، 38.90، 37.50 درصد می شود. این در حالی است که این میزان ورود نور، نه تنها باعث افزایش میزان خیرگی آزاردهنده در فضای داخلی نمیشود، بلکه خیرگی آزاردهنده را به میزان 72 و 75 درصد کاهش می دهد. همچنین استفاده از این سیستم، منجر به کاهش مصرف انرژی(EUI) به میزان 21.60، 25.00، 22.60، 23.50 درصد نیز می شود. | ||
کلیدواژهها | ||
بهینه سازی نور روز و انرژی؛ آنالیز حساسیت؛ کارگاه معماری؛ رف نوری؛ اصفهان | ||
عنوان مقاله [English] | ||
Analyzing the performance of the light shelf in providing visual comfort and energy efficiency in the educational space (Case study: Isfahan Islamic Azad University architecture studio) | ||
نویسندگان [English] | ||
Zahra Sharifian1؛ Narges Dehghan2؛ Mahdi Hamzehnejad3؛ Zahrasadat Zomorodian4 | ||
1Department of Architecture, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran. | ||
2Department of Architecture, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran. | ||
3Assistant Professor, Dean of School of Architecture and Environmental Design, Iran University of Science & Technology, Tehran, Iran. | ||
4Assistant professor, Department of Construction, Faculty of architecture and urban planning, Shahid Beheshti University, Tehran, Iran | ||
چکیده [English] | ||
Daylight has significant effects on the visual comfort, well-being and productivity of users, and at the same time offers significant benefits for reducing energy consumption. On the other hand, the entry of too much daylight into the space increases the annoying glare and creates excessive heat of the building for the user. Therefore, considering the importance of the quantity and quality of natural lighting in the space, it is necessary to design and use daylight systems next to the openings. The present study evaluates the performance of daylight and energy in an architectural design studio located in Isfahan city, by using the light shelf system along with some variables of the glazing, a place where the importance of daylight to improve the visual comfort of the space from the users' point of view is twofold. The method of this research includes: identifying the variables of the light shelf and glazing, modeling (simulation modeling for daylight and energy), implementing the simulation process, determining the effect of the variables on the target functions (receiving appropriate daylight and reducing consumption) using sensitivity analysis, implementing the optimization process and extracting optimal models. Like the results of most researches in this field, the presence of a light shelf next to the window had a significant effect on improving visual comfort and energy efficiency. By comparing the simulation results of the basic model and some of the optimal responses, it can be seen that the use of light shelf in Isfahan city and the southeast front leads to an improvement in sUDI by 36.10, 37.50, 38.90, 37.50 percent and a reduction in energy consumption and reducing energy consumption (EUI) by 21.60, 25.0, 22.60, 23.50 percent. This is while this amount of light entering not only does not increase the amount of annoying glare in the interior, but also improves the glare by 75, 72.50 percent. | ||
کلیدواژهها [English] | ||
Optimizing daylight and energy, sensitivity analysis, Architecture design studio, light shelf, Isfahan | ||
مراجع | ||
#Acosta, I., Campano, M. Á., Leslie, R., & Radetsky, L. (2019). Daylighting design for healthy environments: Analysis of educational spaces for optimal circadian stimulus. Solar Energy, 193, 584-596. https://doi.org/10.1016/j.solener.2019.10.004 Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2015). Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort. Sustainability, 7(8), 10809-10836. https://doi.org/10.3390/su70810809 Bahdad, A., Syed Fadzil, S., & Taib, N. (2020). Optimization of Daylight Performance Based on Controllable Light-shelf Parameters using Genetic Algorithms in the Tropical Climate of Malaysia. Journal of Daylighting, 7, 122-136. https://dx.doi.org/10.15627/jd.2020.10 Bahdad, A. A. S., Fadzil, S. F. S., Onubi, H. O., & BenLasod, S. A. (2021). Sensitivity analysis linked to multi-objective optimization for adjustments of light-shelves design parameters in response to visual comfort and thermal energy performance. Journal of Building Engineering, 44, 102996. https://doi.org/10.1016/j.jobe.2021.102996. Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports, 6, 1590-1607. https://doi.org/10.1016/j.egyr.2020.06.008 Bellia, L., Musto, M., & Spada, G. (2011). Illuminance measurements through HDR imaging photometry in scholastic environment. Energy and Buildings, 43(10), 2843-2849. https://doi.org/10.1016/j.enbuild.2011.07.006 Berardi, U., & Anaraki, H. K. (2015). Analysis of the Impacts of Light Shelves on the Useful Daylight Illuminance in Office Buildings in Toronto. Energy Procedia, 78, 1793-1798. https://doi.org/10.1016/j.egypro.2015.11.310 Berardi, U., & Anaraki, H. K. (2016). The benefits of light shelves over the daylight illuminance in office buildings in Toronto. Indoor and Built Environment, 27(2), 244-262. https://doi.org/10.1177/1420326X16673413 Ebrahimi-Moghadam, A., Ildarabadi, P., Aliakbari, K., Arabkoohsar, A., & Fadaee, F. (2020). Performance analysis of light shelves in providing visual and thermal comfort and energy savings in residential buildings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42. https://doi.org/10.1007/s40430-020-02565-2 Ebrahimi-Moghadam, A., Ildarabadi, P., Aliakbari, K., & Fadaee, F. (2020). Sensitivity analysis and multi-objective optimization of energy consumption and thermal comfort by using interior light shelves in residential buildings. Renewable Energy, 159, 736-755. https://doi.org/10.1016/j.renene.2020.05.127. Fadaii Ardestani, M. A., Nasseri Mobaaraki, H., Ayatollahi, M. R., & Zomorrodian, Z. S. (2018). The Assessment of Daylight and Glare in Classrooms Using Dynamic Indicators; the Case of SBU Faculty of Architecture and Urban Planning. Soffeh, 28(4), 25-40. https://soffeh.sbu.ac.ir/article_100759.html?lang=en.[in Persian]. Fang, Y., & Cho, S. (2019). Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy, 191, 7-18. https://doi.org/10.1016/j.solener.2019.08.039 Heschong, L. (2003). Windows and Classrooms: A Study of Student Performance and the Indoor Environment: California Energy Commission, 2003.https://doi.org/10.13140/RG.2.2.26759.44964 Joarder, P., Ahmed, Z., Price, A., & Mourshed, M. (2009). A simulation assessment of the height of light shelves to enhance daylighting quality in tropical office buildings under overcast sky conditions in Dhaka, Banlgadesh. https://www.researchgate.net/publication/48354594_A_simulation_assessment_of_the_height_of_light_shelves_to_enhance_daylighting_quality_in_tropical_office_buildings_under_overcast_sky_conditions_in_Dhaka_Banlgadesh. Khanmohamadi, M., Pourahmadi, M., & Mozaffar, F. (2019). Windows optimization based on the glare performance in educational building of Iran hot and dry climate. Journal of Sustainable Architecture and Urban Design, 7(1), 113-128. https://jsaud.sru.ac.ir/article_1158.html?lang=en[in Persian]. Keshtkar Ghalati, A., & Ahmadian, M. (2024). Effects of Window and Light Shelve Configurations on Energy Consumption and Daylight Illuminance in Classrooms. Renewable Energy Research and Applications, 5(1), 107-119. https://doi.org/10.22044/rera.2023.12563.1194. Kontadakis, A., Tsangrassoulis, A., Doulos, L., & Zerefos, S. (2018). A Review of Light Shelf Designs for Daylit Environments. Sustainability, 10(1), 71. https://doi.org/10.3390/su10010071. Lee, H. (2019). Performance evaluation of a light shelf with a solar module based on the solar module attachment area. Building and Environment, 159, 106161. https://doi.org/10.1016/j.buildenv.2019.106161. Li, M., Zheng, J., & Wu, J. (2008). Improving NSGA-II Algorithm Based on Minimum Spanning Tree (Vol. 5361).https://doi.org/10.1007/978-3-540-89694-4_18. Mahdavinejad, M., Tahbaz, M., & Dolatabadi, M. (2016). Optimization of Properties and Light Shelf System in Architecture of Learning Building. Journal of Fine Arts: Architecture & Urban Planning, 21(2), 81-92. https://jfaup.ut.ac.ir/article_60164.html?lang=en.[in Persian]. Mangkuto, R. A., Feradi, F., Putra, R. E., Atmodipoero, R. T., & Favero, F. (2018). Optimisation of daylight admission based on modifications of light shelf design parameters. Journal of Building Engineering, 18, 195-209. https://doi.org/10.1016/j.jobe.2018.03.007 Mangkuto, R. A., Rohmah, M., & Asri, A. D. (2016). Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy, 164, 211-219. https://doi.org/10.1016/j.apenergy.2015.11.046 Mangkuto, R. A., Siregar, M. A. A., Handina, A., & Faridah. (2018). Determination of appropriate metrics for indicating indoor daylight availability and lighting energy demand using genetic algorithm. Solar Energy, 170, 1074-1086. https://doi.org/10.1016/j.solener.2018.06.025 Moazzeni, M. H., & Ghiabaklou, Z. (2016). Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran. Buildings, 6(3), 26. https://doi.org/10.3390/buildings6030026. Moazzeni, M. H., & Ghiabaklou, Z. (2016). Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran. Buildings, 6(3). https://doi.org/10.3390/buildings6030026 Mohammadjavad, M., Mansooreh, T., & Mahnaz, D. (2016). Optimization of Properties and Light Shelf System in Architecture of Learning Building. HOnar - ha - ye - ziba Memari - va - shahrsazi, 21(2), 81-92.https://jfaup.ut.ac.ir/article_60164.html?lang=en .[in Persian]. Motazedian, F., & Mahdavinejad, M. (2015). Light Shelves’ Typology and their Characteristics. Armanshahr Architecture & Urban Development, 8, 91-103. https://www.armanshahrjournal.com/article_39343.html?lang=en .[in Persian]. Najafi, G. s., Gorji Mahlabani, Y., & Pilechiha, P. (2023). Sensitivity analysis and optimization of building geometry with energy-daylight efficiency approach. journal of Sustainable Architecture and Urban Design, 11(1), 45-58. https://jsaud.sru.ac.ir/article_1799.html?lang=en.[in Persian]. Naji, S., Aye, L., & Noguchi, M. (2021). Multi-objective optimisations of envelope components for a prefabricated house in six climate zones. Applied Energy, 282, 116012. https://doi.org/10.1016/j.apenergy.2020.116012 Nasiri, b. s., & zarandi, M. m. (2020). Achieving the Principles of High Performance of Light Shelves Design in Educational Buildings. Journal of Environmental Science and Technology, 2(22), 359-369. https://sanad.iau.ir/en/Article/837011.[in Persian]. Pilechiha, P. (2020). Optimization Methods and Algorithms in Architectural and Urban Design, Basic Mathematical Solutions. Naqshejahan- Basic studies and New Technologies of Architecture and Planning, 10(3), 205-217. https://bsnt.modares.ac.ir/article-2-42128-en.html.[in Persian]. Pilechiha, P., Mahdavinejad, M., Pour Rahimian, F., Carnemolla, P., & Seyedzadeh, S. (2020). Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency. Applied Energy, 261, 114356.https://doi.org/10.1016/j.apenergy.2019.114356 Province, M. D. o. I. (2016). Retrieved from https://esfahanmet.ir/Researchese. R.C. Picker, J. (2017). Radiance Color Picker Retrieved from http://www.jaloxa.eu/resources/radiance/colour_pic Rafati, N., Hazbei, M., & Eicker, U. (2023). Louver configuration comparison in three Canadian cities utilizing NSGA-II. Building and Environment, 229, 109939. https://doi.org/10.1016/j.buildenv.2022.109939 Rafati, N., Sanaieian, H., & Faizi, M. (2021). Comparison of different louver configurations for daylight and energy optimization in Bandar Abbas and Tabriz. Journal of Fine Arts: Architecture & Urban Planning, 26(3), 71-84. https://jfaup.ut.ac.ir/article_86391.html.[in Persian]. Sabbagh, M., Mandourah, S., & Hareri, R. (2022). Light Shelves Optimization for Daylight Improvement in Typical Public Classrooms in Saudi Arabia. Sustainability, 14(20), 13297.https://doi.org/10.3390/su142013297 Salahsoor, Z., & Zarandi, M. M. (2023). The Effect of the Performance of the Optical Shelf (External) in Creating a Comfortable Environment in Architectural Studios in Latitude 35. Journal of Space and Place Studies, 1(3), 91-102.https://sanad.iau.ir/en/Article/1079648?FullText.[in Persian]. Shafavi, N. S., Tahsildoost, M., & Zomorodian, Z. S. (2020). Investigation of illuminance-based metrics in predicting occupants’ visual comfort (case study: Architecture design studios). Solar Energy, 197, 111-125. https://doi.org/10.1016/j.solener.2019.12.051. ANSl/ASHRAE/IES Standard 90.1-2022:“Energy Standard for Buildings except Low-Rise Residential Buildings, SI Edition”. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, GA. https://nclose.us.com/wp-content/uploads/2024/02/ASHRAE-90.1-2022-.pdf Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2020). A review of automatic control strategies based on simulations for adaptive facades. Building and Environment, 175, 106801. https://doi.org/10.1016/j.buildenv.2020.106801. Tabadkani, A., Roetzel, A., Li, H. X., & Tsangrassoulis, A. (2021). Daylight in Buildings and Visual Comfort Evaluation: the Advantages and Limitations. Journal of Daylighting, 8, 181-203. https://doi.org/10.15627/jd.2021.16. Wortmann, T., & Natanian, J. (2020). Multi-Objective Optimization for Zero-Energy Urban Design in China: A Benchmark.https://www.researchgate.net/publication/341592609_Multi-Objective_Optimization_for_Zero-Energy_Urban_Design_in_China_A_Benchmark. Wright, J., Brownlee, A., Mourshed, M., & Wang, M. (2013). Multi-objective optimization of cellular fenestration by an evolutionary algorithm. Journal of Building Performance Simulation, 7, 33-51. https://doi.org/10.1080/19401493.2012.762808. Zazzini, P., Romano, A., Lorenzo, A., Portaluri, V., & Crescenzo, A. (2020). Experimental Analysis of the Performance of Light Shelves in Different Geometrical Configurations Through the Scale Model Approach. Journal of Daylighting, 7, 37-56. https://doi.org/10.15627/jd.2020.4 Ziaee, N., & Vakilinezhad, R. (2022). Multi-objective optimization of daylight performance and thermal comfort in classrooms with light-shelves: Case studies in Tehran and Sari, Iran. Energy and Buildings, 254, 111590.https://doi.org/10.1016/j.enbuild.2021.111590# | ||
آمار تعداد مشاهده مقاله: 649 تعداد دریافت فایل اصل مقاله: 492 |