Journal of Electrical and Computer Engineering Innovations (JECEI)
مقاله 19 ، دوره 13، شماره 1 ، فروردین 2025، صفحه 241-256 اصل مقاله (1.38 M )
نوع مقاله: Original Research Paper
شناسه دیجیتال (DOI): 10.22061/jecei.2024.11252.783
نویسندگان
M. Z. Rahman 1 ؛ J. E. Giti* 1 ؛ S. A.H. Chowdhury 2 ؛ M. S Anower 1
1 Department of Electrical & Electronic Engineering, Faculty of Electrical and Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.
2 Department of Electronics & Telecommunication Engineering, Faculty of Electrical and Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.
تاریخ دریافت : 14 شهریور 1403 ،
تاریخ بازنگری : 12 آبان 1403 ،
تاریخ پذیرش : 24 آبان 1403
چکیده
Background and Objectives: Node counting is undoubtedly an essential task since it is one of the important parameters to maintain proper functionality of any wireless communications network including undersea acoustic sensor networks (UASNs). In undersea communications networks, protocol-based node counting techniques suffer from poor performance due to the unique propagation characteristics of the medium. To solve the issue of counting nodes of an undersea network, an approach based on cross-correlation (CC) of Gaussian signals has been previously introduced. However, the limited bandwidth (BW) of undersea communication presents a significant challenge to the node counting technique based on CC, which traditionally uses Gaussian signals with infinite BW. This article aims to investigate this limitation. Methods: To tackle the infinite BW issue, a band-limited Gaussian signal is employed for counting nodes, impacting the cross-correlation function (CCF) and the derived estimation parameters. To correlate the estimation parameters for finite and infinite BW scenarios, a scaling factor (SF) is determined for a specific BW by averaging their ratios across different node counts. Results: Error-free estimation in a band-limited condition is reported in this work if the SF for that BW is known. Given the typical undersea BW range of 1–15 kHz, it is also important to establish a relationship between the SF and BW. This relationship, derived and validated through simulation, allows for determining the SF and achieving accurate node count under any band-limited condition within the 1–15 kHz range. Furthermore, an evaluation of node counting performance in terms of a statistical parameter called the coefficient of variation (CV) is performed for finite BW scenarios. As a side contribution, the effect of noise on the CC-based undersea node counting approach is also explored.Conclusion: This research reveals that successful node counting can be achieved using the CC-based technique in the presence of finite undersea BW constraints.
کلیدواژهها
Bandwidth (BW) ؛ Coefficient of Variation (CV) ؛ Cross-correlation (CC) ؛ Scaling Factor (SF)
مراجع
[1] S. Ashraf, M. Gao, Z. Chen, H. Naeem, T. Ahmed, "CED-OR based opportunistic routing mechanism for underwater wireless sensor networks,” Wireless Pers. Commun., 125: 487-511, 2022.
[2] G. Cario, A. Casavola, F. Torchiaro, "Medium access control in underwater sensor networks: a comparison between the standard JANUS and Ad-Hoc energy-efficient MAC protocols", in Proc. of the 10th Convention of the European Acoustics Association Forum (Acusticum): 5071-5078, 2023.
[3] D. Varagnolo, G. Pillonetto, L. Schenato, “Distributed Cardinality Estimation in Anonymous Networks,” IEEE Trans. Autom. Control, 59(3): 645-659, 2014.
[4] S. Chen, Y. Qiao, S. Chen, J. Li, “Estimating the cardinlaity of a mobile peer-to-peer network,” IEEE J. Sel. Areas Commun., 31(9): 359-368, 2013.
[5] O. Sluciak, M. Rupp, “Network size estimation using distributed orthogonalization,” IEEE Signal Processing Lett., 20(4): 347-350, 2013.
[6] A. Douik, S. A. Aly, T. Y. Al-Naffouri, M. S. Alouini, “Cardinality estimation algorithm in large-scale anonymous wireless sensor networks,” in Proc. International Conference on Advanced Intelligent System and Informatics: 569-578, 2018.
[7] S. Kadam, K. S. Bhargao, G. S. Kasbekar, “Node cardinality estimation in a heterogeneous wireless network deployed over a large region using a mobile base station,” J. Network Comput. Appl., 221: 103779, 2024.
[8] M. Cattani, M. Zuniga, A. Loukas, K. Langendoen, “Lightweight neighborhood cardinality estimation in dynamic wireless networks,” in Proc. 13th Int. Symposium Information Processing in Sensor Networks: 179-189, 2014 .
[9] D. Varagnolo, G. Pillonetto, L. Schenato, “Consensus based estimation of anonymous networks size using Bernoulli trials,” in Proc. American Control Conf.: 2196-2201, 2012.
[10] G. Luna, R. Baldoni, S. Bonomi, I. Chatzigiannakis, “Conscious and unconscious counting on anonymous dynamic networks,” in Proc. International Conference on Distributed Computing and Networking: 257–271, 2014.
[11] R. Lucchese, D. Varagnolo, J. C. Delvenne, J. Hendrickx, “Network cardinality estimation using max consensus: The case of Bernoulli trials,” in Proc. 54th IEEE Conference on Decision and Control (CDC): 895-901, 2015.
[12] S. Manaseer, I. Alhabash, “Number of node estimation in mobile Ad Hoc networks,” Int. J. Interac. Mob. Technol. (iJIM), 11(6): 65-72, 2017.
[13] S. Chatterjee, G. Pandurangan, P. Robinson, “Network size estimation in small-world networks under byzantine faults,” in Proc. IEEE International Parallel and Distributed Processing Symposium (IPDPS): 855-865, 2019.
[14] Z. Xi, X. Liu, J. Luo, S. Zhang, S. Guo, “Fast and reliable dynamic tag estimation in large-scale RFID systems,” IEEE Internet Things J., 8(3): 1651-1661, 2021.
[15] B. Wang, G. Duan, “A reliable cardinality estimation for missing tags over a noisy channel,” Comput. Commun., 188: 125-132, 2022.
[16] Z. He, “Reader scheduling for tag population estimation in multicategory and multireader RFID systems,” Wireless Commun. Mob. Comput., 2021.
[17] A. Frahtia, M. Benssalah, A. Kifouche, K. Drouiche, “Improved tag estimation method for TDMA anticollision protocols using CA-CFAR technique,” Frequenz, 78(11-12): 697-708, 2024.
[18] Q. Cao, Y. Feng, Z. Lu, H. Qi, L. M. Tolbert, L. Wan, Z. Wang, W. Zhou, “Approximate Cardinality Estimation (ACE) in large-scale Internet of Things deployments,” Ad Hoc Networks, 66: 52-63, 2017.
[19] P. I. Parra, S. M. Sánchez, J. A. Fraire, R. D. Souza, S. Céspedes, “Network size estimation for direct-to-satellite IoT,” IEEE Internet Things J., 10(7): 6111-6125, 2023.
[20] X. Jie, L. Haoliang, D. Wei, J. Ao, “Network host cardinality estimation based on artificial neural network,” Secur. Commun. Netw., 2022.
[21] L. D. Rodić, I. Stančić, K. Zovko, T. Perković, P. Šolić, “Tag estimation method for ALOHA RFID system based on machine learning classifiers,” Electronics, 11(16): 2605, 2022.
[22] P. S. Page, A. S. Siyote, V. S. Borkar, G. S. Kasbekar, “Node cardinality estimation in the internet of things using privileged feature distillation,” IEEE Trans. Mach. Learn. Commun. Netw., 2: 1229-1247, 2024.
[23] S. A. Alhuthali, M. Murad, I. A. Tasadduq, M. H. Awedh, A. M. Rushdi, S. Alotaibi, “An effective tag estimation method based upon artificial neural networks and signal strength for anticollision in radio frequency identification systems,” Int. J. Comput. Intell. Syst., 17(200), 2024.
[24] S Climent, A. Sanchez, J. V. Capella, N. Meratnia, J. J. Serrano, “Underwater acoustic wireless sensor networks: Advances and future trends in physical, MAC and routing layers,” Sensors (Basel Switzerland), 14(1): 795-833, 2014.
[25] M. Nemati, H. Takshi, V. Shah-Mansouri, “Tag estimation in RFID systems with capture effect,” in Proc. 23rd Iranian Conference on Electrical Engineering: 368-373, 2015.
[26] M. S. A. Howlader, M. R. Frater, M. J. Ryan, “Estimation in underwater sensor networks taking into account capture,” in Proc. IEEE Oceans’07, Aberdeen, Scotland: 1-6, 2007.
[27] M. S. A. Howlader, M. R. Frater, M. J. Ryan, “Estimating the number of neighbours and their distribution in an underwater communication network,” in Proc. Second Int. Conf. Sensor Technologies and Applications, 2007.
[28] M. S. A. Howlader, M. R. Frater, M. J. Ryan, “Delay-insensitive identification of neighbors using unslotted and slotted protocols,” Wirel. Commun. Mob. Comput., 2012.
[29] S. Blouin, “Intermission-based adaptive structure estimation of wireless underwater networks,” in Proc. 10th IEEE Int. Conf. Networking, Sensing and Control: 146-151, 2013.
[30] S. Anower, M. R. Frater, M. J. Ryan, “Estimation by cross-correlation of the number of nodes in underwater networks,” in Proc. Australasian Telecommunication Networks and Applications Conf.: 1-6, 2009.
[31] M. S. Anower, M. A. Motin, A. S. M. Sayem, S. A. H. Chowdhury, “A node estimation technique in underwater wireless sensor network,” in Proc. Int. Conf. Informatics, Electronics & Vision: 1–6, 2013.
[32] S.Hossain, A. Mallik, M. A. Arefin, “A signal processing approach to estimate underwater network cardinalities with lower complexity,” J. Electr. Comput. Eng. Innovations (JECEI), 5(2): 131-138, 2017.
[33] N. Afrin, S. Anower, M. Islam, “Dimensionality determination of unknown deployed underwater sensor network (UWSN) using cost function,” Int. J. Commun. Syst., 33 (15): e4537, 2020.
[34] S. A. H. Chowdhury, M. S. Anower, J. E. Giti, “A signal processing approach of underwater network node estimation with three sensors,” in Proc. 1st Int. Conf. Electrical Engineering and Information & Commun. Technology: 1-6, 2014.
[35] S. A. H. Chowdhury, M. S. Anower, J. E. Giti, “Effect of sensor number and location in cross-correlation based node estimation technique for underwater communications network,” in Proc. 3rd Int. Conf. Informatics, Electronics & Vision: 1-6, 2014.
[36] M. A. Hossen, S. A. H. Chowdhury, M. S. Anower, S. Hossen, M. F. Pervej, M. M. Hasan, “Effect of signal length in cross-correlation based underwater network size estimation,” in Proc. International Conference on Electrical Engineering and Information Communication Technology (ICEEICT): 1-6, 2015.
[37] B. K. Dash, H. H. Raton, S. A. H. Chowdhury, S. A. Rahman, “Performance analysis of cross-correlation based underwater network node estimation technique by varying signal length,” in Proc. International Conference on Advancement in Electrical and Electronic Engineering: 1-4, 2018.
[38] S. A. H. Chowdhury, J. E. Giti, M. S. Anower, “Transmit energy calculation in cross-correlation based underwater network cardinality estimation,” in Proc. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE): 362-365, 2015.
[39] S. A. H. Chowdhury , M. S. Anower, J. E. Giti , M. I. Haque, “Effect of signal strength on different parameters of cross-correlation function in underwater network cardinality,” in Proc. 2014 17th International Conference on Computer and Information Technology (ICCIT), 2014 .
[40] M. S. Anower, S. A. H. Chowdhury, J. E. Giti, “Mitigating the effect of multipath using cross-correlation: application to underwater network cardinality estimation,” Int. J. Syst., Control Commun., 7(3): 197-220, 2016.
[41] M. S. Anower, S. A. H. Chowdhury, J. E. Giti, “A robust signal processing approach of underwater network size estimation taking multipath propagation effects into account,” Adv. in Netw., 3(3): 22-32, 2015.
[42] H. Sarker, M. Oli-Uz-Zaman, I. H. Chowdhury, S. A. H. Chowdhury, M. R. Islam, “Node estimation approach of underwater communication networks using cross-correlation for direct and multi-path propagation,” in Proc. International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST): 286-291, 2019.
[43] M. K. Hossain, M. S. Anower, M. M. Rahman, S. M. N. Siraj, “Effect of dispersion coefficient on underwater network size estimation,” in Proc. International Conference on Electrical Engineering and Information Communication Technology (ICEEICT): 1-4, 2015.
[44] M. S. Anower, S. A. H. Chowdhury, J. E. Giti, M. I. Haque , “Effect of bandwidth in cross-correlation based underwater network size estimation,” in Proc. 8th International Conference on Electrical and Computer Engineering: 413-416, 2014.
[45] S. K. Bain , S. A. H. Chowdhury , A. H. M. Asif , M. S. Anower , M. F. Pervej , S. S. Haque , “Impact of underwater bandwidth on cross-correlation based node estimation technique,” in Proc. 2014 17th International Conference on Computer and Information Technology (ICCIT), 2014.
[46] H. H. Raton, S. A. H. Chowdhury, M. J. Rana, M. S. Anower, S. A. Hossain, M. I. Sarkar, “Cross-correlation based approach of underwater network cardinality estimation with random placement of sensors,” in Proc. IEEE International Conference on Telecommunications and Photonics (ICTP): 1-5, 2015.
[47] D. K. Mondal, S. A. H. Chowdhury, Q. N. Ahmed, M. S. Anower, “Cross-correlation based approach of underwater network size estimation with unequal sensor separation,” in Proc. International Conference on Computer and Information Engineering (ICCIE): 99-102, 2015.
[48] B. K. Dash, S. A. H. Chowdhury, A. H. M. M. Kamal, M. S. Anower, A. Halder, “Underwater network cardinality estimation using cross-correlation: Effect of unequal sensor spacing,” in Proc. International Workshop on Computational Intelligence (IWCI): 181-186, 2016.
[49] M. S. Anower, “Estimation using cross-correlation in a communications network,” Ph.D. dissertation, SEIT, University of New South Wales at Australian Defense Force Academy, Canberra, 2011.
[50] M. S. Anower , S. A. H. Chowdhury , J. E.Giti , A. S. M.Sayem , M. I. Haque, “Underwater network size estimation estimation using cross-correlation: selection of estimation parameter,” in Proc. 9th 9th International Forum on Strategic Technology (IFOST), 2014.
[51] S. W. Smith, “Chapter 2: Statistics, probability and noise,” in The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA, 1999.
[52] S. A. H. Chowdhury, M. S.Anower , J. E.Giti, “Performance comparison of underwater network size estimation techniques,” Int. J. Syst., Control Commun., 7 (1): 16-34, 2016.
[53] S. A. H. Chowdhury, J. E. Giti, M. S. Anower, “Optimization between estimation error and transmit energy in cross-correlation based underwater network cardinality estimation,” Wireless Pers. Commun., 97: 5797-5816, 2017.
[54] M. S. A. Howlader, “Estimation and identification of neighbours in wireless networks considering the capture effect and long delay,” Ph.D. dissertation, SEIT, University of New South Wales at Australian Defense Force Academy, Canberra, 2009.
[55] B. A. Barry, “Errors in practical measurement in science, engineering, and technology,” John Wiley & Sons, Hoboken, New Jersey, 1978.
آمار
تعداد مشاهده مقاله: 49
تعداد دریافت فایل اصل مقاله: 35