تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,101 |
تعداد مشاهده مقاله | 2,883,265 |
تعداد دریافت فایل اصل مقاله | 2,090,499 |
A combined efficient method for approximate two-dimensional integral equations | ||
Journal of Discrete Mathematics and Its Applications | ||
دوره 9، شماره 4، اسفند 2024، صفحه 269-287 اصل مقاله (351.9 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2024.11175.1088 | ||
نویسندگان | ||
Mohsen Fallahpour* ؛ Reza Ezzati؛ Elham Hashemizadeh | ||
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran. | ||
تاریخ دریافت: 27 مهر 1403، تاریخ بازنگری: 17 آبان 1403، تاریخ پذیرش: 03 آذر 1403 | ||
چکیده | ||
In this paper, we combine the two-dimensional (2D) Haar wavelet functions (HWFs) with the block-pulse functions (BPFs) to solve the 2D linear Volterra-Fredholm integral equations (2D-L(VF)IE), so we present a new hybrid computational effcient method based on the 2D-HWFs and 2D-BPFs to approximate the solution of the 2D linear Volterra-Fredholm integral equations. In fact, the HWFs and their relations to the BPFs are employed to derive a general procedure to form operational matrix of Haar wavelets. Theoretical error analysis of the proposed method is done. Finally some examples are presented to show the effectiveness of the proposed method. | ||
کلیدواژهها | ||
Haar wavelet؛ Block-pulse functions؛ Operational matrix؛ Two-dimensional integral | ||
مراجع | ||
[1] F. Mohammadi, Haar wavelets approach for solving multidimensional stochastic Ito-Volterra integral equations, Applied Mathematics E-Notes 15 (2015) 80-96.https://www.math.nthu.edu.tw/ amen/2015/AMEN(140902).pdf [2] Z.H. Jiang, W. Schaufelberger, Block pulse functions and their applications in control systems, Springer-Verlag, 1992.https://doi.org/10.1007/bfb0009162 [3] W. Rudin, Principles of mathematical analysis, McGraw-Hill Publishing Company Ltd., 1976. https://doi.org/10.1017/s002555720005333x [4] F. Keinert, Wavelets and Multiwavelets, A Crc Press Company, Boca Raton, London, New York, Washington DC, 2004. https://doi.org/10.1201/9780203011591 [5] K. Maleknejad, Z. Jafari-Behbahani, Application of two-dimensional triangular functions for solving nonlinear class of mixed Volterra-Fredholm integral equations, Math. Comp. Mode. 55 (2012) 1833-1844. https://doi.org/10.1016/j.mcm.2011.11.041 [6] E. Babolian, K. Maleknejad, M. Roodaki, H. Almasieh, Two dimensional triangular functions and their applications to nonlinear 2d Volterra-Fredholm equations, Comp. Math. App. 60 (2012) 1711- 1722. https://doi.org/10.1016/j.camwa.2010.07.002 [7] F. Hosseini Shekarabi, K. Maleknejad, R. Ezzati, Application of two-dimensional Bernstein polynomials for solving mixed Volterra-Fredholm integral equations, African Mathematical Union and Springer-Verlag Berlin Heidelberg, 2014. https://doi.org/10.1007/s13370-014-0283-6 [8] D. Darshana, B. Jayanta, On the solution of nonlinear nonlocal Volterra-Fredholm type hybrid fractional differential equation, Indian Journal of Pure and Applied Mathematics (2023) 1–12. https://doi.org/10.1007/s13226-023-00462-7 [9] A. R. Yaghoobnia, R. Ezzati, Numerical solution of Volterra–Fredholm integral equation systems by operational matrices of integration based on Bernstein multi-scaling polynomials, Comp. and Appl. Math. 41 (2022) 324. https://doi.org/10.1007/s40314-022-02036-5 [10] K. Parand, H. Yari, M. Delkhosh, Solving two-dimensional integral equations of the second kind on non-rectangular domains with error estimate, Engineering with Computers 36 (2020) 725–739. https://doi.org/10.1007/s00366-019-00727-y [11] P. Assari, M. Dehghan, The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions, Appl. Numer. Math. 131 (2018) 140–157. https://doi.org/10.1016/j.apnum.2018.05.001 [12] W. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, App. Num. Math. 59 (2009) 1709-1719. https://doi.org/10.1016/j.apnum.2009.01.009 [13] S. Bazm, E. Babolian, Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules, Commun. Nonlinear Sci. Numer. Simult. 17 (2012) 1215–1223. https://doi.org/10.1016/j.cnsns.2011.08.017 [14] S. Nemati, P. Lima, Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using legender polynomials, J. Comp. Appl. Math. 242 (2013) 53–69. https://doi.org/10.1016/j.cam.2012.10.021 [15] A. Tari, M. Rahimi, S. Shahmorad, F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method, J. Comp. Appl. Math. 228 (2009) 70–76. https://doi.org/10.1016/j.cam.2008.08.038 [16] P. Assari, H. Adibi, M. Dehghal, A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis, J. Comp. Appl. Math. 239 (2013) 72–92. https://doi.org/10.1016/j.cam.2012.09.010 [17] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions, Cog. Math. 4 (2017) 1296750. https://doi.org/10.1080/23311835.2017.1296750 [18] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis of solution for twodimensional stochastic Volterra integral equations by Haar wavelet, Int. J. Appl. Comput. Math (2019) 1–13. https://doi.org/10.1007/s40819-019-0739-3 | ||
آمار تعداد مشاهده مقاله: 19 تعداد دریافت فایل اصل مقاله: 60 |