
تعداد نشریات | 11 |
تعداد شمارهها | 226 |
تعداد مقالات | 2,281 |
تعداد مشاهده مقاله | 3,482,691 |
تعداد دریافت فایل اصل مقاله | 2,549,857 |
مدل وزنی ضرایب تاثیر مولفههای کالبدی ساختمان بر کیفیت محیط داخلی آپارتمانهای مسکونی مبتنی بر مدلهای ارزیابی دلفی و FBWM | ||
معماری و شهرسازی پایدار | ||
مقاله 11، دوره 12، شماره 1 - شماره پیاپی 23، تیر 1403، صفحه 205-230 اصل مقاله (1.93 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22061/jsaud.2024.10758.2219 | ||
نویسندگان | ||
سارا آکوچکیان* 1؛ فاطمه مهدیزاده سراج2؛ سید باقر حسینی3 | ||
1دانشجوی دکتری معماری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
2استاد، گروه معماری مرمت، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
3دانشیار، گروه معماری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
تاریخ دریافت: 29 اسفند 1402، تاریخ بازنگری: 13 آبان 1403، تاریخ پذیرش: 15 آبان 1403 | ||
چکیده | ||
1- مقدمه: مطالعهی حوزهی کیفیت محیط به دلیل تاثیر بر آسایش ساکنین و مصرف انرژی ساختمان اهمیت دارد. همچنین به دلیل گسترش آپارتماننشینی در سالهای اخیر، ضرورت انجام مطالعاتی که به شناسایی مولفههای موثر بر آسایش و سلامت ساکنین در ساختمانهای مسکونی بپردازد، افزایش یافته است. با این حال بیشتر پژوهشها به بررسی عناصر محیطی چهارگانهی آسایش حرارتی، صوتی، بصری و کیفیت هوا پرداختهاند و جنبههای کالبدی ساختمان کمتر مورد ارزیابی قرار گرفته است. هدف پژوهش حاضر شناسایی و دسته بندی عوامل کالبدی موثر بر کیفیت محیط داخلی در آپارتمانهای مسکونی به منظور ارائهی مدل وزنی این معیارها است. 2- روش تحقیق: در مرحله اول شناسایی معیارها از بررسی 127 منبع از پیشینهی پژوهش صورت گرفت. 11 دسته معیار و 50 زیرمعیار در این مرحله استخراج شدند. در مرحله دوم برگزاری پنل دلفی خبرگان به منظور ارزیابی معیارهای پژوهش صورت گرفت که طی دو مرحله، 10 دسته معیار و 40 زیرمعیار برای ارزیابی نهایی مورد تایید متخصصین قرار گرفت. در مرحله سوم وزن دهی معیارها توسط روش بهترین بدترین فازی (FBWM) صورت گرفت. 3- نتایج و بحث: نتایج تحقیق مدل وزنی ضرایب تاثیر شش دسته معیار و 23 زیرمعیار کالبدی -بازشوها، هندسه و تناسبات فضا، ویژگیهای کنترلی، چیدمان و تفکیک فضایی، نوع ساختمان و دکوراسیون داخلی و مبلمان- بر ادراک کیفیت محیط داخلی را ارائه میدهد. یافتهها نشان داد که ویژگیهای کالبدی با وزنی نزدیک به ویژگیهای محیطی به طور موثری بر کیفیت محیط داخلی تاثیر گذارند؛ و این نشانگر آن است که ارتقای کیفیت محیط داخلی به تنهایی از فناوریهای پیشرفتهی ساختمانی یا سامانههای کنترل محیطی ناشی نمیشود، بلکه به طور قابل ملاحظهای تحت تاثیر طراحی و شکل ساختمان قرار دارد. 4- نتیجه گیری: نتایج این پژوهش نشان داد ویژگی بازشوها بیشترین تاثیر کالبدی را بر کیفیت محیط دارد. همچنین ویژگیهای کنترلی در زمینهی تنظیم حرارت، بازشوها، روشنایی و دید از عوامل اصلی تامین کیفیت محیط است و افراد حتی در صورت تامین مناسب شرایط محیطی، نیازمند داشتن کنترل بر شرایط خود هستند. در زمینهی نوع ساختمان نیز نتایج نشان داد که با تامین سطح مناسبی از ویژگیهای محیطی و کالبدی میتوان تاثیرات بعضا منفی سکونت در ساختمانهای آپارتمانی بر ادراک محیطی افراد را تعدیل کرد. از سویی تحلیل یافتهها نشان داد ارتفاع واحد از سطح زمین بر درجات ادراک کیفیت محیط تاثیر گذار است. | ||
کلیدواژهها | ||
کیفیت محیط داخلی؛ ادراک ساکنین؛ آپارتمان های مسکونی؛ مولفههای کالبدی؛ مدل ارزیابی وزنی | ||
عنوان مقاله [English] | ||
Weighted Model of Architectural Factors'''' Influence on the Indoor Environment Quality of Residential Apartments Based on Delphi and FBWM Evaluation Models | ||
نویسندگان [English] | ||
Sara Akouchekian1؛ Fatemeh Mehdizadeh Seraj2؛ Seyed Bagher Hosseini3 | ||
1Ph.D. Candidate | ||
2Professor, Department of Restoration, Faculty of Architecture and Environmental Design, Iran University of Science & Technology | ||
3Assistant professor, Department of Architecture, Faculty of Architecture and Environmental Design, Iran University of Science & Technology | ||
چکیده [English] | ||
Introduction: The study of environmental quality is important due to its impact on residents'' comfort and building energy consumption. Additionally, given the recent expansion of apartment living, the necessity of studies focusing on identifying the components that influence residents'' comfort and health in residential buildings has increased. However, most research has predominantly focused on the four environmental elements of thermal comfort, acoustic comfort, visual comfort, and air quality, with less emphasis on the architectural aspects of buildings. Research Objective: The aim of this study is to identify and categorize the architectural factors that affect the indoor environment quality in residential apartments to propose a weighted model of these criteria. Research Methodology: In the first stage, criteria identification was conducted by reviewing 127 research sources, resulting in the extraction of 11 categories of criteria and 50 sub-criteria. In the second stage, a Delphi expert panel was convened to evaluate the research criteria. Through two rounds of evaluation, 10 categories of criteria and 40 sub-criteria were approved for final assessment by specialists. In the third stage, criteria weighting was performed using the Fuzzy Best Worst Method (FBWM). Conclusion: The research findings present a weighted model of the impact coefficients of six categories and 23 architectural sub-criteria—such as openings, spatial geometry and proportions, control features, layout and spatial segregation, building type, and interior decoration and furniture—on the perception of indoor environment quality. The results indicate that architectural features significantly influence indoor environment quality, with architectural features having a weight similar to environmental features. This suggests that improving indoor environment quality is significantly influenced by building design and form, rather than solely by advanced building technologies or environmental control systems. Additionally, it was identified that the characteristics of openings have the most significant architectural impact on environmental quality. The research results also demonstrate that control features related to temperature regulation, openings, illumination, and views are key factors in ensuring environmental quality, as individuals desire control over their conditions even when environmental conditions are adequate. Regarding building type, the findings indicate that by ensuring appropriate levels of environmental and architectural features, negative effects of living in apartment buildings on individuals'' environmental perception can be mitigated. Furthermore, the analysis showed that the height of the unit above ground level significantly influences the perceived quality of the environment. | ||
کلیدواژهها [English] | ||
Indoor Environment Quality, Resident Perception, Residential Apartments, Architectural Components, Weighted Evaluation Model | ||
مراجع | ||
Al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., & Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 105, 369–389. https://doi.org/10.1016/j.buildenv.2016.06.001 Andargie, M., Touchie, M., & O'Brien, W. (2019). A review of factors affecting occupant comfort in multi-unit residential buildings. Building and Environment, 160, 1-14. https://doi.org/10.1016/j.buildenv.2019.106182 Aries, M., Veitch, J., & New, G. (2010). Windows, view, and office characteristics predict physical and psychological discomfort. Environmental Psychology, 30(4), 533-541. https://doi.org/10.1016/j.jenvp.2009.12.004 ASHRAE Guideline 10-2016. (2016). Interactions affecting the achievement of acceptable indoor environments. Atlanta: The American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE. ASHRAE Terminology A Comprehensive Glossary of Terms for the Built Environment. URL: https://terminology.ashrae.org/?term=IEQ (accessed: 2022/12/5). Astolfi, A., & Pellerey, F. (2008). Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. J Acoust Soc Am, 123(1), 163-73. https://doi.org/10.1121/1.2816563 Baeza, F. J., Rajagopalan, P., & Andamon, M. M. (2020). Reviewing indoor environmental quality of high-rise social housing. Proceedings of the International Conference of Architectural Science Association, 2020-Novem, 925–934. Bakker, L. G., Hoes-van Oeffelen, E. C. M., Loonen, R. C. G. M., & Hensen, J. L. M. (2014). User satisfaction and interaction with automated dynamic facades: A pilot study. Building and Environment, 78, 44–52. https://doi.org/10.1016/j.buildenv.2014.04.007 Bluyssen, P. M., Aries, M., & van Dommelen, P. (2011). Comfort of workers in office buildings: The European HOPE project. Building and Environment, 46(1), 280–288. https://doi.org/10.1016/j.buildenv.2010.07.024 Bower, I., Tucker, R. & Enticott, P. (2019). Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. Journal of Environmental Psychology. 66. https://doi.org/10.1016/j.jenvp.2019.101344 Brager, G., & de Dear, R. (1998). Thermal adaptation in the built environment: A literature review. Building and Environment, 27(1), 83-96. https://doi.org/10.1016/S0378-7788(97)00053-4 Brager, G. S., Paliaga, G., & de Dear, R. (2004). Operable windows, personal control, and occupant comfort. ASHRAE Transactions, 110, Part 2, 17–35. Buratti, C., Belloni, E., Merli, F., & Ricciardi, P. (2018). A new index combining thermal, acoustic, and visual comfort of moderate environments in temperate climates. Building and Environment, 139, 27–37. https://doi.org/10.1016/j.buildenv.2018.04.038 Byrd, H. (2012). Post-occupancy evaluation of green buildings: The measured impact of over-glazing. Architectural Science Review. 55. 1-7. https://doi.org/10.1080/00038628.2012.688017 Cao, B., Ouyang, Q., Zhu, Y., Huang, L., Hu, H., & Deng, G. (2012). Development of a multivariate regression model for overall satisfaction in public buildings based on field studies in Beijing and Shanghai. Building and Environment, 47, 394–399. https://doi.org/10.1016/j.buildenv.2011.06.022 Carver, A., Lorenzon, A., Veitch, J., Macleod, A., & Sugiyama, T. (2020). Is greenery associated with mental health among residents of aged care facilities? A systematic search and narrative review. Aging and Mental Health, 24(1), 1–7. https://doi.org/10.1080/13607863.2018.1516193 Castaldo, V. L., Pigliautile, I., Rosso, F., Cotana, F., De Giorgio, F., & Pisello, A. L. (2018). How subjective and non-physical parameters affect occupants’ environmental comfort perception. Energy and Buildings, 178, 107–129. https://doi.org/10.1016/j.enbuild.2018.08.020 Cheshme Noor, M., Yazdanfar, A., & Mehdizadeh Saradj, F. (2024). Explanation of interior architecture factors based on targeted non-visual lighting. Journal of Sustainable Architecture and Urban Design, 11(2), 183-206. https://doi.org/10.22061/jsaud.2024.9959.2169 [in Persian] Choi, J.-H., Aziz, A., & Loftness, V. (2009). Decision support for improving occupant environmental satisfaction in office buildings: The relationship between sub-set of IEQ satisfaction and overall environmental satisfaction. Ninth International Conference of Healthy Buildings. Dewing, J. (2009). Caring for people with dementia: noise and light. Nursing Older People, 21, 34–38. https://doi.org/10.7748/nop2009.06.21.5.34.c7102 Fanger, P., Breum, N., & Jerking, E. (1977). Can Colour and Noise Influence Man's Thermal Comfort? Ergonomics, 20(1), 11-18. https://doi.org/10.1080/00140137708931596 Fassio, F., Fanchiotti, A., & de Lieto Vollaro, R. (2014). Linear, non-linear and alternative algorithms in the correlation of IEQ factors with global comfort: a case study. Sustainability, 6, 8113–8127. https://doi.org/10.3390/su6118113 Fich, L. B., Jönsson, P., Kirkegaard, P. H., Wallergård, M., Garde, A. H., & Hansen, Å. (2014). Can architectural design alter the physiological reaction to psychosocial stress? A virtual TSST experiment. Physiology & Behavior, 135, 91–97. https://doi.org/10.1016/j.physbeh.2014.05.034 Fink-Hafner, D., Dagen, T., Doušak, M., Novak, M., & Hafner-Fink, M. (2019). Delphi method: strengths and weaknesses. Advances in Methodology and Statistics, 16(2), 1-19. https://doi.org/10.51936/fcfm6982 Fisk, W. J. (2000). Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annual Review of Energy and the Environment, 25(1), 537–566. https://doi.org/10.1146/annurev.energy.25.1.537 Franz, G., Von Der Heyde, M., & Bülthoff, H. H. (2005). An empirical approach to the experience of architectural space in virtual reality-exploring relations between features and affective appraisals of rectangular indoor spaces. Automation in Construction, 14(2), 165-172. https://doi.org/10.1016/j.autcon.2004.07.009 Frontczak, M., Schiavon, S., Goins, J., Arens, E., Zhang, H., & Wargocki, P. (2012). Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air, 22(2), 119–131. https://doi.org/10.1111/j.1600-0668.2011.00745.x Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922-937. https://doi.org/10.1016/j.buildenv.2010.10.021 Galasiu, A., & Veitch, J. (2006). Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: A literature review. Energy and Buildings. 38. 728-742. https://doi.org/10.1016/j.enbuild.2006.03.001 Guerra-Santin, O., & Itard, L. (2010). Occupants’ behaviour: determinants and effects on residential heating consumption. Building Research & Information, 38(3), 318–338. https://doi.org/10.1080/09613211003661074 Guo, S. & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems. 121. https://doi.org/10.1016/j.knosys.2017.01.010 Heerwagen, J. (2000). Green buildings, organizational success, and occupant productivity. Building Research & Information, 28(5–6), 353–367. https://doi.org/10.1080/096132100418500 Hsu, C. C., & Sandford, B. A. (2007). The Delphi technique: Making sense of consensus. Practical Assessment, Research & Evaluation, 12(10), 1–8. https://doi.org/10.7275/pdz9-th90 Huang, L., Zhu, Y., Ouyang, Q., & Cao, B. (2012). A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Building and Environment, 49, 304–309. https://doi.org/10.1016/j.buildenv.2011.07.022 Humphreys, M. A. (2005). Quantifying occupant comfort: Are combined indices of the indoor environment practicable? Building Research & Information, 33(4), 317–325. https://doi.org/10.1080/09613210500161950 Humphrey-Murto, S., Wood, T. J., Gonsalves, C., Mascioli, K., & Varpio, L. (2020). The Delphi method. Academic Medicine, 95(1), 168. https://doi.org/10.1097/ACM.0000000000002887. Hopkinson, R. G. (1972). Glare from daylighting in buildings. Applied Ergonomics, 3(4), 206–215. https://doi.org/10.1016/0003-6870(72)90102-0 Jaakkola, J. (1998). The office environment model: A conceptual analysis of the sick building syndrome. Indoor Air Journal, 8(S4), 7–16. https://doi.org/10.1111/j.1600-0668.1998.tb00002.x Jamrozik, A., Ramos, C., Zhao, J., Bernau, J., Clements, N., Vetting Wolf, T., & Bauer, B. (2018). A novel methodology to realistically monitor office occupant reactions and environmental conditions using a living lab. Building and Environment, 130, 190–199. https://doi.org/10.1016/j.buildenv.2017.12.024 Joshua, B. A., Abdul-Manan, S., Mohamed, H. I., Marten, D., & Shokry, R. (2016). A review of research investigating indoor environmental quality in green and conventional residential buildings. In Proceedings, Annual Conference - Canadian Society for Civil Engineering (Vol. 2, pp. 834–842). Khair, N., Mohd Ali, H., & Juhari, N. H. (2015). Assessment of physical environment elements in public low-cost housing. Jurnal Teknologi, 74(2). https://doi.org/10.11113/jt.v74.4519 Kim, J., & de Dear, R. (2012). Nonlinear relationships between individual IEQ factors and overall workspace satisfaction. Building and Environment, 49, 33–40. https://doi.org/10.1016/j.buildenv.2011.09.022 Kim, J., & Hong, T., & Jaemin, J., & Lee, M., & Lee, M., & Jeong, K., & Koo, C., & Jeong, J. (2017). Establishment of an optimal occupant behavior considering the energy consumption and indoor environmental quality by region. Applied Energy. 204, 1431-1443. https://doi.org/10.1016/j.apenergy.2017.05.017 Kraus, M., & Juhasova Senitkova, I. (2020). Indoor environmental quality determinants in the buildings. In IOP Conference Series: Materials Science and Engineering (Vol. 960). https://doi.org/10.1088/1757-899X/960/4/042092 Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., … Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231–252. Küller, R., Ballal, S., Laike, T., Mikellides, B., & Tonello, G. (2006). The impact of light and colour on psychological mood: A cross-cultural study of indoor work environments. Ergonomics, 49, 1496–1507. https://doi.org/10.1080/00140130600858142 Lai, A., Mui, K., Wong, L., & Law, L. (2009). An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy and Buildings, 41(9), 930–936. https://doi.org/10.1016/j.enbuild.2009.03.016 Lai, J. H. K., & Yik, F. W. H. (2007). Perceived importance of the quality of the indoor environment in commercial buildings. Indoor and Built Environment, 16(4), 311–321. https://doi.org/10.1177/1420326X07080463 Lai, J. H. K., & Yik, F. W. H. (2009). Perception of importance and performance of the indoor environmental quality of high-rise residential buildings. Building and Environment, 44(2), 352–360. https://doi.org/10.1016/j.buildenv.2008.03.013 Leccese, F., Rocca, M., Salvadori, G., Belloni, E., & Buratti, C. (2021). Towards a holistic approach to indoor environmental quality assessment: Weighting schemes to combine effects of multiple environmental factors. Energy and Buildings, 245, 111056. https://doi.org/10.1016/j.enbuild.2021.111056 Lyons, P. R., Arasteh, D., & Huizenga, C. (2000). Window performance for human thermal comfort. ASHRAE Transactions, 106(1), 594–604. Mahdavi, A., & Unzeitig, U. (2005). Occupancy implications of spatial, indoor-environmental, and organizational features of office spaces. Building and Environment, 40, 113–123. https://doi.org/10.1016/j.buildenv.2004.04.013 Markelj, J., Kitek Kuzman, M., Grošelj, P., & Zbašnik-Senegačnik, M. (2014). A simplified method for evaluating building sustainability in the early design phase for architects. Sustainability, 6(12), 8775–8795. https://doi.org/10.3390/su6128775 Marino, C., Nucara, A., & Pietrafesa, M. (2012). Proposal of comfort classification indexes suitable for both single environments and whole buildings. Building and Environment, 57, 58–67. https://doi.org/10.1016/j.buildenv.2012.04.012 Mihai, T., & Iordache, V. (2016). Determining the indoor environment quality for an educational building. Energy Procedia, 85, 566–574. https://doi.org/10.1016/j.egypro.2015.12.246 Mijorski, S., & Cammelli, S. (2016). Stack Effect in High-Rise Buildings: A Review. International Journal of High-Rise Buildings. 5. 327-338. https://doi.org/10.21022/IJHRB.2016.5.4.327 Molina, F. Q., & Yaguana, D. B. (2018). Indoor environmental quality of urban residential buildings in Cuenca—Ecuador: Comfort standard. Buildings, 8(7), 1–19. https://doi.org/10.3390/buildings8070090 Mui, K. W., Tsang, T. W., Wong, L. T., & Yu, Y. P. W. (2019). Evaluation of an indoor environmental quality model for very small residential units. Indoor and Built Environment, 28(4), 470–478. https://doi.org/10.1177/1420326X18773802 Mujan, I., Anđelković, A. S., Munćan, V., Kljajić, M., & Ružić, D. (2019). Influence of indoor environmental quality on human health and productivity: A review. Journal of Cleaner Production, 217, 646–657. https://doi.org/10.1016/j.jclepro.2019.01.307 Mujan, I., Licina, D., Kljajić, M., Čulić, A., & Anđelković, A. S. (2021). Development of indoor environmental quality index using a low-cost monitoring platform. Journal of Cleaner Production, 312, 127846. https://doi.org/10.1016/j.jclepro.2021.127846 Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563–572. https://doi.org/10.1016/S0378-7788(02)00006-3 Navai, M., & Veitch, J. (2003). Acoustic Satisfaction in Open-Plan Offices: Review and Recommendations. https://doi.org/10.4224/20386513 O’Brien, H., Gunay, B. (2014). The contextual factors contributing to occupants' adaptive comfort behaviors in offices - A review and proposed modeling framework. Building and Environment. 77, 77-87. https://doi.org/10.1016/j.buildenv.2014.03.024. Ortiz, M. A., Kurvers, S. R., & Bluyssen, P. M. (2017). A review of comfort, health, and energy use: Understanding daily energy use and wellbeing for the development of a new approach to study comfort. Energy and Buildings, 152, 323–335. https://doi.org/10.1016/j.enbuild.2017.07.060 Parkinson, Thomas & Parkinson, Alex & de Dear, Richard. (2019). Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Building and Environment. 149. 241-252. https://doi.org/10.1016/j.buildenv.2018.12.016 Piasecki, M., Radziszewska-Zielina, E., Czerski, P., Fedorczak-Cisak, M., Zielina, M., Krzyściak, P., Kwaśniewska-Sip, P., Grześkowiak, W. (2020). Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building. Energies. 13(22), 6051. https://doi.org/10.3390/en13226051 Rezaei,J. (2015). Best worst multi criteria decision making method, Omega, 53, 49-57, https://doi.org/10.1016/j.omega.2014.11.009. Rezaei, J, (2016). Best worst multi criteria decision making method: Some properties and a linear model, Omega, 64, 126-130, https://doi.org/10.1016/j.omega.2015.12.001. Ricketts, L., & Straube, J. (2014). A field study of airflow in mid to high-rise multi-unit residential buildings. In Proceedings of the 14th Canadian Conference on Building Science and Technology, Toronto, Ontario. Ribeiro, C., Ramos, N. M. M., & Flores-Colen, I. (2020). A review of balcony impacts on the indoor environmental quality of dwellings. Sustainability, 12(16), 1–19. https://doi.org/10.3390/su12166453 Roetzel, A., Tsangrassoulis, A. & Dietrich, U. (2014). Impact of building design and occupancy on office comfort and energy performance in different climates. Building and Environment. 71. 165–175. https://doi.org/10.1016/j.buildenv.2013.10.001. Rohde, L., Larsen, T. S., Jensen, R. L., Larsen, O. K., Jønsson, K. T., & Loukou, E. (2020). Determining indoor environmental criteria weights through expert panels and surveys. Building Research & Information, 48(4), 415–428. https://doi.org/10.1080/09613218.2019.1655630 Rohde, L., Larsen, T. S., & Jensen, R. L. (2019). Framing holistic indoor environment: Definitions of comfort, health and well-being. Indoor and Built Environment, 0(0), 1–19. https://doi.org/10.1177/1420326X19875795 Rosen, G. & Walks, A. (2013). Rising cities: Condominium development and the private transformation of the metropolis. Geoforum. 49. 160-172. https://doi.org/10.1016/j.geoforum.2013.06.010 Roumi, S., Zhang, F., Stewart, R. A., & Santamouris, M. (2022). Commercial building indoor environmental quality models: A critical review. Energy and Buildings, 263, 112033. https://doi.org/10.1016/j.enbuild.2022.112033 Rousseau, D., & Wasley, J. (1997). Healthy by design: Building and remodeling solutions for creating healthy homes. Hartley and Marks. Sforzini, L., Worrell, C., Kose, M., Anderson, I. M., Aouizerate, B., Arolt, V., & Pariante, C. M. (2022). A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials. Molecular Psychiatry, 27(3), 1286–1299. https://doi.org/10.1038/s41380-021-01381-x Schweiker, M., & Shukuya, M. (2010). Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling. Energy Policy. 38. 2976-2986. https://doi.org/10.1016/j.enpol.2010.01.035. Spetic, W., Kozak, R., & Cohen, D. (2008). How consumers value healthy houses: A preliminary segmentation of Canadian households. Housing Studies, 23, 37–52. https://doi.org/10.1007/s10901-007-9101-x Statistical Center of Iran. (2016). Population and Housing Census 2016. Retrieved May 2021, from https://www.amar.org.ir/ [in Persian] Statistical Center of Iran. (2017). Information on building permits issued in 2017. Retrieved May 2021, from https://www.amar.org.ir/Portals/0/News/1396/1_apssshk1-.pdf [in Persian] Stamps, A. (2010). Effects of permeability on perceived enclosure and spaciousness. Environment and Behavior, 42(6), 864–886. https://doi.org/10.1177/0013916509337287 Stamps, A. (2011). Effects of area, height, elongation, and color on perceived spaciousness. Environment and Behavior, 43(2), 252–273. https://doi.org/10.1177/0013916509354696 Steinmetz, J., & Posten, A.-C. (2017). Physical temperature affects response behavior. Journal of Experimental Social Psychology, 70, 294–300. https://doi.org/10.1016/j.jesp.2016.12.001 Tahsildoost, M., & Zomorodian, Z. S. (2018). Indoor environment quality assessment in classrooms: An integrated approach. Journal of Building Physics, 42(3), 336–362. https://doi.org/10.1177/1744259118759687 Veitch, J. A. (2001). Psychological Processes Influencing Lighting Quality. Journal of the Illuminating Engineering Society, 30(1), 124–140. https://doi.org/10.1080/00994480.2001.10748341 Wang, C., Zhang, F., Wang, J., Doyle, J. K., Hancock, P. A., Ming, C., & Liu, S. (2021). How indoor environmental quality affects occupants' cognitive functions: A systematic review. Building and Environment, 193, 107647. https://doi.org/10.1016/j.buildenv.2021.107647 Wong, L., Mui, K., & Hui, P. (2008). A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Building and Environment, 43(1), 1–6. https://doi.org/10.1016/j.buildenv.2007.01.001 Wong, L. T., Mui, K. W., & Tsang, T. W. (2018). An open acceptance model for indoor environmental quality (IEQ). Building and Environment, 142, 371–378. https://doi.org/10.1016/j.buildenv.2018.06.031 Xu, H., Huang, Q., & Zhang, Q. (2018). A study and application of the degree of satisfaction with indoor environmental quality involving a building space factor. Building and Environment, 143, 227–239. https://doi.org/10.1016/j.buildenv.2018.07.007 Zagreus, L., Huizenga, C., Arens, E., & Lehrer, D. (2004). Listening to the occupants: A web-based indoor environmental quality survey. Indoor Air, 14(s8), 65–74. https://doi.org/10.1111/j.1600-0668.2004.00301.x Zhang, L., Chi, Y., Edelstein, E., Schulze, J., Gramann, K., Velasquez, A., Cauwenberghs, G., & Macagno, E. (2010). Wireless Physiological Monitoring and Ocular Tracking: 3D Calibration in a Fully-Immersive Virtual Health Care Environment. Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2010, 4464–4467. https://doi.org/10.1109/IEMBS.2010.5625969 Zhang, D., Mui, K.-W., & Wong, L.-T. (2023). Ten questions concerning indoor environmental quality (IEQ) models: The development and applications. Applied Sciences, 13(5), 1–24. https://doi.org/10.3390/app13053343 Qi, Zhen & Huang, Qiong & Zhang, Qi. (2019). Contribution of Space Factors to Decisions on Comfort of Healthy Building Design. IOP Conference Series: Earth and Environmental Science. 329. 012014. https://doi.org/10.1088/1755-#1315/329/1/012014. # | ||
آمار تعداد مشاهده مقاله: 272 تعداد دریافت فایل اصل مقاله: 292 |