Journal of Electrical and Computer Engineering Innovations (JECEI)
مقاله 9 ، دوره 13، شماره 1 ، فروردین 2025، صفحه 117-128 اصل مقاله (3.04 M )
نوع مقاله: Original Research Paper
شناسه دیجیتال (DOI): 10.22061/jecei.2024.10914.747
نویسنده
P. Hamedani*
Department of Railway Engineering and Transportation Planning, University of Isfahan, Isfahan, Iran.
تاریخ دریافت : 27 اردیبهشت 1403 ،
تاریخ بازنگری : 15 مرداد 1403 ،
تاریخ پذیرش : 16 شهریور 1403
چکیده
Background and Objectives: To overcome the disadvantages of the traditional two-level inverters, especially in electric drive applications, multi-level inverters (MLIs) are the widely accepted solution. Diode-Clamped Inverters (DCIs) are a well-known structure of multi-level inverters. In DCIs, the voltage balance of the DC-link capacitors and the Common Mode (CM) voltage reduction are two important criteria that should be considered. Methods: This paper concentrates on the current control of 3-phase 4-level DCI with finite control set model predictive control (MPC) strategy. Current tracking performance, DC-link capacitor voltage balance, switching frequency minimization, and CM voltage control have been considered in the objective function of the MPC. Moreover, the multistep prediction method has been applied to improve the performance of the DCI. Results: The effectiveness of the proposed multistep prediction control for the 4-level DCI has been evaluated with different horizon lengths. Moreover, the effect of several values of weighting factors has been studied on the system behavior. Conclusion: Results validate the accuracy of current tracking and voltage balancing in the suggested multistep MPC for the 4-level DCI. In addition, CM voltage control and switching frequency reduction can be included in the predictive control. Decreasing the CM voltage and switching frequency will oppositely affect the dynamic behavior and voltage balancing of the DCI. Therefore, selection of weighting factors depends on the system needs and requirements.
کلیدواژهها
Current Control ؛ Diode-Clamped Inverter ؛ Model Predictive Control (MPC) ؛ Multistep Prediction ؛ Weighting Factor
مراجع
[1] J. Rodriguez, J. S. Lai, F. Z. Peng, "Multilevel inverters: A survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., 49(4): 724-738, 2002.
[2] J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, M. A. Perez, "Multilevel converters: An enabling technology for high-power applications," Proc. IEEE, 97(11): 1786-1817, 2009.
[3] L. Tolbert, F. Z. Peng, T. Habetler, "Multilevel converters for large electric drives," IEEE Trans. Ind. Electron., 35(1): 36-44, 1999.
[4] H. Rudnick, J. Dixon, L. Moran, "Delivering clean and pure power," IEEE Power Energy Mag., 1(5): 32-40, 2003.
[5] S. Enyedi, "Electric cars—Challenges and trends," in Proc. IEEE 2018 International Conference on Automation, Quality and Testing, Robotics (AQTR): 1-8, 2018.
[6] H. Schefer, L. Fauth, T. H. Kopp, R. Mallwitz, J. Friebe, M. Kurrat, "Discussion on electric power supply systems for all electric aircraft," IEEE Access, 8: 84188-84216, 2020.
[7] C. Jung, "Power up with 800-V systems: The benefits of upgrading voltage power for battery-electric passenger vehicles," IEEE Electrific. Mag., 5(1): 53-58, 2017.
P8] P. Hamedani, M. Changizian, "A New hybrid predictive-PWM control for flying capacitor multilevel inverter," J. Electr. Comput. Eng. Innovations, 12(2): 353-362, 2024.
[9] J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, S. Kouro, "Multilevel voltage-source-converter topologies for industrial medium-voltage drives," IEEE Trans. Ind. Electron., 54(6): 2930-2945, 2007.
[10] P. Hamedani, A. Shoulaei, "Utilization of CHB multilevel inverter for harmonic reduction in fuzzy logic controlled multiphase LIM drives," J. Electr. Comput. Eng. Innovations, 8(1): 19-30, 2020.
[11] P. Hamedani, A. Shoulaei, "A comparative study of harmonic distortion in multicarrier based PWM switching techniques for cascaded H-bridge inverters," Adv. Electr. Comput. Eng., 16(3): 15-24, 2016.
[12] B. P. McGrath, D. G. Holmes, "Multicarrier PWM strategies for multilevel inverters," IEEE Trans. Ind. Electron., 49(4): 858-867, 2002.
[13] N. Celanovic, D. Boroyevich, "A fast space-vector modulation algorithm for multilevel three-phase converters," IEEE Trans. Ind. Appl., 37(2): 637-641, 2001.
[14] J. I. Vazquez, A. J. Watson, L. G. Franquelo, P. W. Wheeler, J. M. Carrasco, "Feed-forward space vector modulation for single-phase multilevel cascaded converters with any dc voltage ratio," IEEE Trans. Ind. Electron., 56(2): 315-325, 2009.
[15] J. Rodriguez, J. Pontt, P. Correa, P. Cortes, C. Silva, "A new modulation method to reduce common-mode voltages in multilevel inverters," IEEE Trans. Ind. Electron., 51(4): 834-839, 2004.
[16] Y. Liu, H. Hong, A. Huang, "Real-time calculation of switching angles minimizing THD for multilevel inverters with step modulation," IEEE Trans. Ind. Electron., 56(2): 285-293, 2009.
[17] Z. Du, L. M. Tolbert, J. N. Chiasson, B. Ozpineci, "Reduced switching-frequency active harmonic elimination for multilevel converters," IEEE Trans. Ind. Electron., 55(4): 1761-1770, 2008.
[18] J. Rodriguez et al., "Latest advances of model predictive control in electrical drives—part I: Basic concepts and advanced strategies," IEEE Trans. Power Electr., 37(4): 3927-3942, 2022.
[19] P. Hamedani, S. Sadr, "Model predictive control of linear induction motor drive with end effect consideration," J. Electr. Comput. Eng. Innovations, 11(2): 253-262, 2023.
[20] P. Hamedani, C. Garcia, F. Flores-Bahamonde, S. Sadr, J. Rodriguez, "Predictive control of 4-level flying capacitor inverter for electric car applications," presented at the 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC): 224-229, 2022.
[21] J. Rodriguez et al., "Latest advances of model predictive control in electrical drives—part iI: Applications and benchmarking with classical control methods," IEEE Trans. Power Electr., 37(5): 5047-5061, 2022.
[22] S. Kouro, P. Cortes, R. Vargas, U. Ammann, J. Rodriguez, "Model predictive control—a simple and powerful method to control power converters," IEEE Trans. Ind. Electr., 56(6): 1826-1838, 2009.
[23] J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. Abu-Rub, H. A. Young, C. A. Rojas, "State of the art of finite control set model predictive control in power electronics," IEEE Trans. Ind. Inf., 9(2): 1003-1016, 2013.
[24] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, M. Norambuena, "Model predictive control for power converters and drives: Advances and trends," IEEE Trans. Ind. Electr., 64(2): 935-947, 2017.
[25] P. Karamanakos, E. Liegmann, T. Geyer, R. Kennel, "Model predictive control of power electronic systems: Methods, results, and challenges," IEEE Open J. Ind. Appl., 1: 95-114, 2020.
[26] J. O. Krah, T. Schmidt, J. Holtz, "Predictive current control with synchronous optimal pulse patterns," in Proc. IEEE 2nd International Conference on Smart Grid and Renewable Energy (SGRE), 2019.
[27] T. Geyer, G. Papafotiou, M. Morari, "Model predictive direct torque control—part I: Concept, algorithm, and analysis," IEEE Trans. Ind. Electr., 56(6): 1894-1905, 2009.
[28] M. F. Elmorshedy, W. Xu, F. F. M. El-Sousy, M. R. Islam, A. A. Ahmed, "Recent achievements in model predictive control techniques for industrial motor: A comprehensive state-of-the-art," IEEE Access, 9: 58170-58191, 2021.
[29] J. O. Krah, T. Schmidt, J. Holtz, "Predictive current control with synchronous optimal pulse patterns," in Proc. IEEE 2nd International Conference on Smart Grid and Renewable Energy (SGRE), 2019.
[30] T. Geyer, G. Papafotiou, M. Morari, "Model predictive direct torque control—part I: Concept, algorithm, and analysis," IEEE Trans. Ind. Electr., 56(6): 1894-1905, 2009.
[31] M. F. Elmorshedy, W. Xu, F. F. M. El-Sousy, M. R. Islam, A. A. Ahmed, "Recent achievements in model predictive control techniques for industrial motor: A comprehensive state-of-the-art," IEEE Access, 9: 58170-58191, 2021.
[32] G. Darivianakis, T. Geyer, W. van der Merwe, “Model predictive current control of modular multilevel converters,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2014.
[33] M. Najjar, M. Shahparasti, R. Heydari, M. Nymand, "Model predictive controllers with capacitor voltage balancing for a single-phase five-level SiC/si based ANPC inverter," IEEE Open J. Power Electr., 2: 202-211, 2021.
[34] J. Raath, T. Mouton, T. Geyer, "Alternative sphere decoding algorithm for long-horizon model predictive control of multi-level inverters," in Proc. IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020.
[35] K. Bandy, P. Stumpf, “Model predictive torque control for multilevel inverter fed induction machines using sorting networks,” IEEE Access, 9: 13800-13813, 2021.
[36] M. Wu, H. Tian, Y. W. Li, G. Konstantinou, K. Yang, “A composite selective harmonic elimination model predictive control for seven-level hybrid-clamped inverters with optimal switching patterns,” IEEE Trans. Power Electr., 36(1): 274-284, 2021.
[37] M. Aly, F. Carnielutti, M. Norambuena, S. Kouro, J. Rodriguez, “A model predictive control method for common grounded photovoltaic multilevel inverter,” in Proc. IEEE IECON 46th Annual Conference of the IEEE Industrial Electronics Society, 2020.
[38] A. G. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, M. Morari, "Explicit model predictive control of dc–dc switched-mode power supplies with extended Kalman filtering," IEEE Trans. Ind. Electron., 56(6): 1864-1874, 2009.
[39] M. Cychowski, K. Szabat, T. Orlowska-Kowalska, "Constrained model predictive control of the drive system with mechanical elasticity," IEEE Trans. Ind. Electron., 56(6): 1963-1973, 2009.
[40] P. Cortes, J. Rodriguez, S. Alepuz, S. Busquets-Monge, J. Bordonau, "Finite-states model predictive control of a four-level diode-clamped inverter," in Proc. IEEE Power Electronics Specialists Conference: 2203-2208, 2008.
[41] V. Yaramasu, B. Wu, M. Rivera, J. Rodriguez, "A new power conversion system for megawatt PMSG wind turbines using four-level converters and a simple control scheme based on two-step model predictive strategy—part I: Modeling and theoretical analysis," IEEE J. Emerging Sel. Top. Power Electr., 2(1): 3-13, 2014.
[42] V. Yaramasu, B. Wu, "Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems," IEEE Trans. Power Electr., 29(10): 5308-5322, 2014.
[43] V. Yaramasu, B. Wu, "Model predictive decoupled active and reactive power control for high-power grid-connected four-level diode-clamped inverters," IEEE Trans. Ind. Electr., 61(7): 3407-3416, 2014.
[44] V. Yaramasu, B. Wu, J. Chen, "Model-predictive control of grid-tied four-level diode-clamped inverters for high-power wind energy conversion systems," IEEE Trans. Power Electr., 29(6): 2861-2873, 2014.
[45] J. G. Ordonez, D. Limon, F. Gordillo, "Multirate predictive control for diode clamped inverters with data-based learning implementation," IFAC-PapersOnLine, 56(2): 6388-6393, 2023.
[46] V. Yaramasu, A. Dekka, M. Rivera, S. Kouro, J. Rodriguez, "Multilevel inverters: Control methods and advanced power electronic applications," Academic Press, 2021.
[47] R. Atif et al., "Simplified model predictive current control of four-level nested neutral point clamped converter," Sustainability, 15(2): 955, 2023.
[48] J. Rodriguez, P. Cortes, Predictive control of power converters and electrical drives, John Wiley & Sons, 2012.
[49] E. Kabalcı, Multilevel Inverters Control Methods and Advanced Power Electronic Applications, Elsevier Science, 2021.
آمار
تعداد مشاهده مقاله: 136
تعداد دریافت فایل اصل مقاله: 28