Journal of Electrical and Computer Engineering Innovations (JECEI)
مقاله 4 ، دوره 12، شماره 2 ، مهر 2024، صفحه 343-352 اصل مقاله (1.2 M )
نوع مقاله: Original Research Paper
شناسه دیجیتال (DOI): 10.22061/jecei.2024.10337.694
نویسندگان
A. Ebadiyan 1 ؛ A. Shokri 1 ؛ M. Amirmazlaghani* 1 ؛ N. Darestani Farahani 2
1 Nanoelectronics Lab (NEL), Shahid Rajaee Teacher Training University, Tehran, Iran.
2 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
تاریخ دریافت : 05 آذر 1402 ،
تاریخ بازنگری : 27 بهمن 1402 ،
تاریخ پذیرش : 02 اسفند 1402
چکیده
Background and Objectives: Semiconductor junction-based radioisotope detectors are commonly used in radioisotope batteries due to their small size and excellent performance. This study aims to design a betavoltaic battery based on a metal-porous semiconductor Schottky structure, comprising an N-type zinc oxide (ZnO) semiconductor and platinum (Pt) metal. Methods: we utilized the TCAD-SILVACO 3D simulator to simulate the device, and a C-Interpreter code was applied to simulate the beta particle source, which was an electron beam with an average energy equivalent to 63Ni beta particles. The short circuit current, open-circuit voltage, fill factor (FF), and efficiency of the designed structure were calculated through simulation. Additionally, we discussed the theoretical justification based on the energy band structure. Results: The energy conversion efficiency of the proposed structure was calculated to be 11.37% when bulk ZnO was utilized in the Schottky junction. However, by creating pores and increasing the effective junction area, a conversion efficiency of 35.5% was achieved. The proposed structure exhibited a short-circuit current, open-circuit voltage, and fill factor (FF) of 37.5 nA, 1.237 V, and 76.5%, respectively.Conclusion: This study explored a betavoltaic device with a porous structure based on a Schottky junction between Pt and ZnO semiconductor. The creation of pores increased the contact surface area and effectively trapped beta beams, resulting in improved performance metrics such as efficiency, short circuit current, and open-circuit voltage.
کلیدواژهها
Betavoltaic cell ؛ Zinc oxide (ZnO) semiconductor ؛ Porous structure ؛ Schottky Junction
مراجع
[1] Y. Huang, A. S. S. Vasan, R. Doraiswami, M. Osterman, M. Pecht, “MEMS reliability review,” IEEE Trans. Device and Mate. Reliab., 12(2): 482-493, 2012.
[2] S. El-Shemy, A. H. Aly, H. Sayed, M. F. Eissa, “Production of intensifying blue light by Cherenkov radiation phenomena and its application as a power source,” Opt. Quantum Electron., 54(2): 70, 2022 .
[3] S. T. Revankar, T. E. Adams, “Advances in betavoltaic power sources,” J. Energy Power Sources, 1(6): 321-329 ,2014.
[4] C. Qin, W. Yuan, D. Qiao, “Research on betavoltaic microbattery,” Nucl. Electron. Detect. Technol., 28(2): 294-298, 2008.
[5] T.H. Smith, J. Greenborg, W. E. Matheson, “Benefit/risk analysis of cardiac pacemakers powered by betacel® Promethium-147 Batteries,” Nucl. Technol., 26(1): 54-64, 1975.
[6] A. A. Svintsov, A. A. Krasnov, M. A. Polikarpov, A. Y. Polyakov, E. B. Yakimov, “Betavoltaic battery performance: Comparison of modeling and experiment,” Appl. Radiat. Isot., 137: 184-189, 2018.
[7] M. Prelas, M. Boraas, F. D. L. Aguilar, J. D. Seelig, M. T. Tchouaso, D. Wisniewski, “Nuclear batteries and radioisotopes,” Switzerland: Springer International Publishing, 2016.
[8] H. Chen, L. Jiang, X. Chen, “Design optimization of GaAs betavoltaic batteries,” J. Phys. D: Appl. Phys., 44(21): 215303, 2011.
[9] H. Guo, H. Yang, Y. Zhang, “Betavoltaic microbatteries using porous silicon,” IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS): 867-870, 2007.
[10] S. Yao, Z. Song, X. Wang, H. San, Y. Yu, “Design and simulation of betavoltaic battery using large-grain polysilicon,” Appl. Radiat. Isot., 70(10): 2388-2394, 2012.
[11] S. Rahastama, A. Waris, S. Viridi, F. Iskandar, ”Optimization of surface passivation parameters in [147Pm]-Si planar pn junction betavoltaic based on analytical 1-D minority carrier diffusion equation approaches,” Applied Radiation and Isotopes, 151, pp.226-234, 2019.
[12] T. Shimaoka, H. Umezawa, K. Ichikawa, J. Pernot, S. Koizumi, “Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction,” Appl. Phys. Lett., 117(10):103902, 2020.
[13] V. N. Murashev, S. A. Legotin, S. I. Didenko, O. Rabinovich, A. A. Krasnov, S. U. Urchuk, “Improvement of Si-betavoltaic batteries technology,” Adv. Mate. Res., 1070: 585-588, 2015.
[14] M. R. Khan, J. R. Smith, R. P. Tompkins, S. Kelley, M. Litz, J. Russo, J. Leathersich, F. S. Shahedipour-Sandvik, K. A. Jones, A. Iliadis, “Design and characterization of GaN pin diodes for betavoltaic devices,” Solid-State Electron., 136: 24-29, 2017.
[15] H. Guo, Y. Shi, Y. Zhang, Y. Zhang, J. Han, “Fabrication of SiC pin betavoltaic cell with 63 Ni irradiation source,” in Proc. IEEE International Conference of Electron Devices and Solid-State Circuits: 1-2, 2011 .
[16] L. Zhang, H. L. Cheng, X. C. Hu, X. B. Xu, “Model and optimal design of 147Pm SiC-based betavoltaic cell,” Superlattices Microstruct., 123: 60-70, 2018.
[17] M. Litz, W. Ray, J. Russo, S. Kelley, J. Smith, “Planar Homojunction Gallium Nitride (GaN) PiN device evaluated for betavoltaic energy conversion,” Measurement and Analysis. US Army Research Laboratory Adelphi United States, 2016.
[18] N. A. Kuruoğlu, O. Özdemir, K. Bozkurt, “Betavoltaic study of a GaN pin structure grown by metal-organic vapour phase epitaxy with a Ni-63 source,” Thin Solid Films, 636: 746-750 , 2017.
[19] C. J. Eiting, V. Krishnamoorthy, S. Rodgers, T. George, J. D. Robertson, J. Brockman, “Demonstration of a radiation resistant, high efficiency SiC betavoltaic,” Appl. Phys. Lett., 88(6): 064101, 2006.
[20] F. K. anasse, J. J. Pinajian, A. N. Tse, “Schottky barrier betavoltaic battery,” IEEE Trans. Nucl. Sci., 23(1): 860-870, 1976.
[21] H. San, S. Yao, X. Wang, Z. Cheng, X. Chen, “Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery,” Appl. Radiat. Isot., 80: 17-22 , 2013.
[22] Y. Liu, R. Hu, Y. Yang, G. Wang, S. Luo, N. Liu, “Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode,” Appl. Radiat. Isot., 70(3): 438-441, 2012.
[23] G. Peng, L. Xiao-Ying, Y. Xian-Wang, “4H-SiC Schottky betavoltaic micro battery,” Micronanoelectron. Technol., 47(3): 157-162, 2010.
[24] J. W. Murphy, C. D. Frye, R.A. Henderson, M. A. Stoyer, L. F. Voss, R. J. Nikolic, “Demonstration of a three-dimensionally structured betavoltaic,” J. Electron. Mate., 50(3): 1380-1385, 2021.
[25] K. A. Rosenkranz, “Clinical experience with nuclear-powered pacemakers (Promethium-147),” Engineering in Medicine. Springer, Berlin, Heidelberg , (pp. 503-529), 1975.
[26] X. Tang, Y. Liu, D. Ding, D. Chen, “Optimization design of GaN betavoltaic microbattery,” Sci. China Technol. Sci., 55(3): 659-664, 2012.
[27] Z. Movahedian, H. Tavakoli-Anbaran, “Design and optimization of Si-35S betavoltaic liquid nuclear battery in micro dimensions in order to build,” Ann. Nucl. Energy, 143: 107483, 2020.
[28] S. Theirrattanakul, M. Prelas, “A methodology for efficiency optimization of betavoltaic cell design using an isotropic planar source having an energy dependent beta particle distribution,” Appl. Radiat. Isot., 127: 41-46, 2017.
[29] D. Meier, A. Garnov, J. Robertson, J. Kwon, T. Wacharasindhu, “Production of 35S for a liquid semiconductor betavoltaic,” J. Radioanal. Nucl. Chem., 282(1): 271-274, 2009.
[30] S. Deus, “Tritium-powered betavoltaic cells based on amorphous silicon,” in Proc. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036): 1246-1249, 2000.
[31] J. Russo, M. Litz, W. Ray II, G. M. Rosen, D. I. Bigio, R. Fazio, “Development of tritiated nitroxide for nuclear battery,” Appl. Radiat. Isot., 125: 66-73, 2017.
[32] C. Honsberg, W. A. Doolittle, M. Allen, C. Wang, ” GaN betavoltaic energy converters,” in Proc, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference: 102-105, 2005 .
[33] X. Tang, D. Ding, Y. Liu, D. Chen, “Optimization design and analysis of Si-63 Ni betavoltaic battery,” Sci. China Technol. Sci., 55(4): 990-996, 2012.
[34] H. Guo, A. Lal, “Nanopower betavoltaic microbatteries,” in Proc. TRANSDUCERS'03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), 1: 36-39, 2003.
[35] Z. U. O. Guoping, Z. U. O. U. Jianliang, K. E. Guotu, “A Simple theoretical model for 63Ni betavoltaic battery,” Appl. Radiat. Isot., 82: 119-125, 2013.
[36] S. Butera, G. Lioliou, A. M. Barnett, ” Temperature effects on gallium arsenide 63Ni betavoltaic cell,” Appl. Radiat. Isot., 125: 42-47, 2017.
[37] S. Rahastama, A. Waris, “Analytical study of 90Sr betavoltaic nuclear battery performance based on pn junction silicon,” J. Phys. Conf. Ser., 739(1): 012003, 2016.
[38] J. Dixon, A. Rajan, S. Bohlemann, D. Coso, A. D. Upadhyaya, A. Rohatgi, S. Chu, A. Majumdar, S. Yee, “Evaluation of a silicon 90 Sr betavoltaic power source,” Sci. Rep., 6(1): 1-6, 2016.
[39] S. McNamee, D. Wagner, E. M. Fiordaliso, D. Novog, R. R. LaPierre, “GaP nanowire betavoltaic device,” Nanotechnol., 30(7): 075401, 2018.
[40] V. I. Chepurnov, M. V. Dolgopolov, A. V. Gurskaya, A. A Akimchenko, O. V. Kuznetsov, A. V. Radenko, V. V. Radenko, A. S. Mashnin, “C-betavoltaic energyconverter in por-SIC/SI,” Int. J. Mater. Sci. Non-Equilib. Phase Transform., 3(3):119-120, 2017.
[41] A. S. Petrovskaya, S. V. Surov, A. Y. Kladkov, A. B. Tsyganov, “New thermo-plasma technology for selective 14C isotope extraction from irradiated reactor graphite,” in Proc. AIP Conference, 2179(1): 020020, 2019.
[42] D. Belmont, D. J. Marín-Lámbarri, H. S. Cruz-Galindo, A. Huerta, A. M. Martínez, J. Mas-Ruiz, M. E. Ortiz, R. Raya-Arredondo, G. Reza, M. Rodríguez-Ceja, S. Sandoval-Hipólito, “14C/12C isotopic ratio of a research nuclear reactor graphite control bar,” Nucl. Instrum. Methods Phys. Res. Sect. B, 485: 10-12, 2020.
[43] R. K. Yürük, H. Tütüncüler, “Theoretical investigation of high-efficiency GaN–Si heterojunction betavoltaic battery,” Can. J. Phys., 97(9): 1031-1038, 2019.
[44] A. A. Krasnov, V. V. Starkov, S. A. Legotin, O. I. Rabinovich, S. I. Didenko, V. N. Murashev, V. V. Cheverikin, E. B. Yakimov, N. A. Fedulova, B. I. Rogozev, A. S. Laryushkin, “Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation,” Appl. Radiat. Isot., 121: 71-75, 2017.
[45] W. Sun, N. P. Kherani, K. D. Hirschman, L. L. Gadeken, P. M. Fauchet, “A three‐dimensional porous silicon p–n diode for betavoltaics and photovoltaics,” Adv. Mater., 17(10): 1230-1233, 2005.
[46] D. Wagner, D. R. Novog, R. R. LaPierre, “Simulation and optimization of current generation in gallium phosphide nanowire betavoltaic devices,” J. Appl. Phys., 125(16): 165704, 2019.
[47] Q. Zhang, R. Chen, H. San, G. Liu, K. Wang, “Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference,” J. Power Sources, 282: 529-533, 2015.
[48] J. Zhang, Y. Han, L. Ren, X. Wang, H. He, C. Chen, T. Li, “Study on the series resistance of betavoltaic batteries,” Semicon. Sci. Technol., 37(12): 125009, 2022.
[49] I. Kanno, S. Hishiki, Y. Kogetsu, T. Nakamura, M. Katagiri, “Fast response of InSb Schottky detector,” Rev. Sci. Instrum., 78(5): 056103, 2007.
[50] X. Y. Li, J. B. Lu, R. Z. Zheng, Y. Wang, X. Xu, Y. M. Liu, R. He, “Comparison of time-related electrical properties of PN junctions and Schottky diodes for ZnO-based betavoltaic batteries,” Nucl. Sci. Tech., 31(2): 1-12, 2020.
[51] L. Schmidt-Mende, J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today, 10(5): 40-48, 2007.
[52] A. B. Djurišić, Y. H. Leung,2006. “Optical properties of ZnO,” Nanostruct. Small, 2(8‐9): 944-961, 2006.
[53] V. A. Coleman, C. Jagadish, “Basic properties and applications of ZnO,” Zinc Oxide Bulk, Thin Films and Nanostructures: 1-20, 2006.
[54] Y. Lei, Y. Yang, Y. Liu, H. Li, G. Wang, R. Hu, X. Xiong, S. Luo, “The radiation damage of crystalline silicon PN diode in tritium beta-voltaic battery,” Appl. Radiat. Isot., 90: 165-169, 2014.
[55] J. B. Gibson, A. N. Goland, M. Milgram, G. Vineyard, “Dynamics of radiation damage,” Phys. Rev., 120(4): 1229, 1960.
[56] J. W. Corbett, “Electron radiation damage in semiconductors,” Academic Press, New York, 1966.
[57] D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, J. R. Sizelove, “Production and annealing of electron irradiation damage in ZnO,” Appl. Phys. Lett., 75(6): 811-813, 1999.
[58] K. P. Ong, D. J. Singh, P. Wu, “Analysis of the thermoelectric properties of n-type ZnO,” Phys. Rev. B, 83(11): 115110, 2011.
[59] D. H. Kim, G. W. Lee, Y. C. Kim, “Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping,” Solid State Commun., 152(18): 1711-1714, 2012.
[60] L. J. Brillson, Y. Lu, ”ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys., 109(12): 8, 2011.
[61] K. B. Sundaram, A. Khan, “Work function determination of zinc oxide films,” J. Vac. Sci. Technol. A, 15(2): 428-430, 1997.
[62] B. Hussain, A. Aslam, T. M. Khan, M. Creighton, B. Zohuri, “Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations,” Electron., 8(2): 238, 2019.
[63] E. Yakimov, “Electron beam induced current investigation of electrical inhomogeneities with high spatial resolution,” Scanning Microscopy, 6(1): 81-96, 1992.
[64] T. Kobayashi, T. Sugita, S. I. Takayanagi, M. Iio, Y. Sasaki, “GaAs biomedical probes and their applications in nuclear medicine,” IEEE Trans. Nucl. Sci., 20(1): 310-317, 1973.
[65] T. E. Everhart, P. H. Hoff, “Determination of kilovolt electron energy dissipation vs penetration distance in solid materials,” J. Appl. Phys., 42(13): 5837-5846, 1971.
[66] K. A. Kanaya, S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D: Appl. Phys., 5(1): 43, 1972.
[67] C. Donolato, “An analytical model of SEM and STEM charge collection images of dislocations in thin semiconductor layers: I. Minority carrier generation, diffusion, and collection,” Phys. Status Solidi (A), 65(2): 649-658, 1981.
[68] R. Zheng, J. Lu, Y. Liu, X. Li, X. Xu, R. He, Z. Tao, Y. Gao, “Comparative study of GaN betavoltaic battery based on pn junction and Schottky barrier diode,” Radiat. Phys. Chem., 168: 108595, 2020.
[69] S. Butera, M. D. C. Whitaker, A. B. Krysa, A. M. Barnett, “Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell,” J. Phys. D: Appl. Phys., 50(34): 345101, 2017.
[70] M. Prelas et al., Nuclear Batteries and Radioisotopes, Lecture Note in Energy 56, DOI 10.1007/978-3-319-41724-0_2
[71] C. C. Chen, Y. Y. Chang, J. W. Zhang, 2012, “A novel betavoltaic microbattery based on SWNTs thin film-silicon heterojunction,” in Proc. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS): 1197-1200, 2012.
[72] C. Honsberg, W. A. Doolittle, M. Allen, C. Wang. "GaN betavoltaic energy converters," in Proc. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference: 102-105, 2005.
[73] X. B. Tang, Y. P. Liu, D. Ding, D. Chen. "Optimization design of GaN betavoltaic microbattery," Sci. China Technol. Sci. 55(3): 659-664, 2012.
[74] M. Amirmazlaghani, A. Rajabi, Z. Pour-mohammadi, A. A. Sehat, “Betavoltaic battery based on reduced-Graphene-Oxide/Si heterojunction,” Superlattices Microstruct., 145: 106602, 2020.
[75] Y. Naghipour, M. Amirmazlaghani, “Graphene/porous GaN Schottky Betacell,” Micro Nanostruct., 168: 207323, 2020.
آمار
تعداد مشاهده مقاله: 437
تعداد دریافت فایل اصل مقاله: 187