تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,877,850 |
تعداد دریافت فایل اصل مقاله | 2,085,731 |
The generalized moving least squares technique combined with a Householder transformation for computing the first derivatives on the sphere | ||
Journal of Discrete Mathematics and Its Applications | ||
دوره 8، شماره 1، شهریور 2023، صفحه 35-42 اصل مقاله (355.12 K) | ||
نوع مقاله: Full Length Article | ||
شناسه دیجیتال (DOI): 10.22061/jdma.2023.9958.1057 | ||
نویسنده | ||
Vahid Mohammadi* | ||
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University | ||
تاریخ دریافت: 12 بهمن 1401، تاریخ بازنگری: 19 بهمن 1401، تاریخ پذیرش: 06 اسفند 1401 | ||
چکیده | ||
We present a new and simple direct approach based on generalized moving least squares (GMLS) for computing the first derivatives of the functions defined on the sphere. The novel method utilizes a Householder transformation (reflection) and a projection onto the tangent plane to compute the first derivatives at the original point on the sphere. The main benefit of this algorithm is that there is no need to use the spherical harmonics for constructing the approximation of the first derivatives. An example of the approximation has been tested to show the ability of the developed method. Moreover, this method has been applied to solve the transport equation in one example. | ||
کلیدواژهها | ||
generalized moving least squares approximation؛ a Householder reflection؛ transport equation | ||
مراجع | ||
[1] M. Afenyo, F. Khan, B. Veitch, M. Yang, Modeling oil weathering and transport in sea ice, Mar. Pollut. Bull. 107(1) (2016) 206-215. [2] L. C. Bender, Modification of the physics and numerics in a third-generation ocean wave model, J. Atoms Ocean. Tech. 13(3) (1996) 726-750. [3] C. J. Cotter, J. Shipton, Mixed finite elements for numerical weather prediction, J. Comput. Phys. 231(21) (2012) 7076-7091. [4] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific: USA, 2007. [5] N. Flyer, G. B. Wright, Transport schemes on a sphere using radial basis functions, J. Comput. Phys. 226(1) (2007) 1059–1084. [6] B. Fornberg, E. Lehto, Stabilization of RBF–generated finite difference methods for convective PDEs, J. Comput. Phys. 230(6) (2011) 2270–2285. [7] D. Gunderman, N. Flyer, B. Fornberg, Transport schemes in spherical geometries using spline-based RBF-FD with polynomials, J. Comput. Phys. 408 (2020) 109–256. [8] A. Hamed, M. Tadi, A numerical method for inverse source problems for Poisson and Helmholtz equations, Phys. Lett. A. 380(44) (2016) 3707–3716. [9] Y. C. Hon, R. Schaback, Solving the 3D Laplace equation by meshless collocation via harmonic kernels, Adv. Comput. Math. 38(2013) 1–19. [10] Y. C. Hon, R. Schaback, M. Zhong, The meshless Kernel-based method of lines for parabolic equations, Comput. Math. Appl. 68(12) (2014) 2057–2067. [11] Y. C. Hon, R. Schaback, Direct meshless kernel techniques for time-dependent equations, Appl. Math. Comput. 258(2015) 220–226. [12] A. Khodadadian, C. Heitzinger, A transport equation for confined structures applied to the OprP, Gramicidin A, and KcsA channels, J. Comput. Electron. 14(2) (2015) 524–532. [13] M. Krems, The boltzmann transport equation: Theory and applications, Website, December 2007. [14] P. H. Lauritzen, W. C. Skamarock, M. Prather, M. Taylor, A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model Dev. 5(3) (2012) 887–901. [15] D. Levin, The approximation power of moving least-squares, Math. Comput. 67(224) (1998) 1517-1531. [16] J. MacLaren, L. Malkinski, J.Wang, First principles based solution to the boltzmann transport equation for co/cu/co spin valves, Mater. Res. Soc. Symp. Proc. 614 (2000). [17] D. Mirzaei, R. Schaback, M. Dehghan, On generalized moving least squares and diffuse derivatives, IMA J. Numer. Anal. 32 (2012) 983-1000. [18] D. Mirzaei, Direct approximation on spheres using generalized moving least squares, BIT Numer. Math. 57(4) (2017) 1041–1063. [19] V. Mohammadi, M. Dehghan, A. Khodadadian, T. Wick, Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving kriging least squares approximations, Eng. Comput. 37 (2021) 1231-1249. [20] R. D. Nair, J. Côté, A. Staniforth, Cascade interpolation for semi–Lagrangian advection over the sphere, Q. J. Roy. Meteor. Soc. 125(556) (1999) 1445–1486. [21] R. D. Nair, P. H. Lauritzen, A class of deformational flow test cases for linear transport problems on the sphere, J. Comput. Phys. 229(23) (2010) 8868–8887. [22] R. Schaback, Error analysis of nodal meshless methods, in: Meshfree methods for partial differential equations VIII, Springer, 2017, 117–143. [23] V. Shankar, G. B. Wright, Mesh-free semi-Lagrangian methods for transport on a sphere using radial basis functions, J. Comput. Phys. 366 (2018) 170–190. [24] M. Taylor, J. Edwards, S. Thomas, R. D. Nair, A mass and energy conserving spectral element atmospheric dynamical core on the cubed–sphere grid, J. Phys.: Conf. Ser. 78 (2007) 012074 [25] H. Wendland, Scattered Data Approximation, in: Cambridge Mongraph on Applied and Computational Mathematics, Cambridge University Press, 2005. [26] L. Zhang, J. Ouyang, X. Zhang, The two–level element free Galerkin method for MHD flow at high Hartmann numbers, Phys. Lett. A. 372 (2008) 5625–5638. | ||
آمار تعداد مشاهده مقاله: 173 تعداد دریافت فایل اصل مقاله: 206 |