تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,877,168 |
تعداد دریافت فایل اصل مقاله | 2,084,971 |
بهبود مهارت استدلال علّی دانشآموزان به کمک مدلسازی رایانهای | ||
فناوری آموزش | ||
مقاله 9، دوره 17، شماره 3 - شماره پیاپی 67، تیر 1402، صفحه 607-620 اصل مقاله (873.56 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22061/tej.2023.9401.2841 | ||
نویسندگان | ||
مجتبی جهانی فر* 1؛ معصومه هرمزی نژاد2 | ||
1گروه علوم تربیتی، دانشکده علوم تربیتی و روان شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2گروه مدیریت آموزشی، دانشکده ادبیات و علوم انسانی، دانشگاه آزاد اسلامی واحد اهواز، اهواز، ایران | ||
تاریخ دریافت: 21 دی 1401، تاریخ بازنگری: 15 اردیبهشت 1402، تاریخ پذیرش: 21 خرداد 1402 | ||
چکیده | ||
پیشینه و اهداف: مدلسازی رایانهای به یادگیری مفاهیم فراگیر علمی از جمله ساز و کارهای علّی پدیدهها که برای بسیاری از نوآموزان چالشبرانگیز است، کمک فراوانی میکند. باوجود پژوهشهای فراوانی که برای نشان دادن اثربخشی استفاده از رایانه در کلاس منتشر شده است؛ کمتر پژوهشی به بررسی کاربرد مدلسازی رایانهای توسط معلم و اثرات آن بر تفکر و استدلال دانشآموزان در مقایسه با همان تعاملات بدون استفاده از ابزارهای رایانهای پرداخته است. ساختار علّی بسیاری از پدیدههای طبیعی و فیزیکی، تأکید استانداردهای روز آموزش علوم بر توسعه و بهبود تفکر سیستمی در دانشآموزان، نقش پررنگ استدلالهای علّی در درک بهتر علوم، کاربرد فزاینده فنآوریهای رایانهای در کلاس درس فیزیک، ظهور و توسعه سریع نرمافزارهای رایانهای و سامانههای اینترنتی برای مدلسازی و شبیهسازی دنیای واقعی به منظور کمک بیشتر به آموزش و یادگیری فیزیک، و رفع نارساییهای مدلسازی روی کاغذ به کمک رایانه، پژوهشگران را برآن داشت که به بررسی میزان اثربخشی استفاده از مدلسازی رایانهای در کلاس درس فیزیک بر بهبود تفکر سیستمی (با تأکید بر استدلال علّی) دانشآموزان دوره دوم متوسطه بپردازند. بررسی اثربخشی مدلسازی رایانهای بر درک دانشآموزان از پیوندها و استدلالهای علّی در پدیدههای فیزیکی، هدف اصلی این پژوهش است. روشها: . نمونه 80 نفری دانشآموزان پایه یازدهم رشته تجربی انتخاب و در یک طرح نیمه-آزمایشی، متشکل از دو کلاس 20 نفره (با بهرهگیری از مدلسازی رایانهای) و دو کلاس 20 نفره (با بهرهگیری از مدلسازی مفهومی روی کاغذ) شرکت کردند. نمرههای دانشآموزان در استدلال علّی بهصورت پیشآزمون و پسآزمون، جمعآوری شده اند، به کمک تحلیل کواریانس تقاوت بین میانگین پسآزمون استدلال علّی بین گروهها مورد بررسی قرار گرفته است. در این پژوهش تفاوت میانگین هم برای نوع مدلسازی (رایانهای و کاغذی) و هم برای جنسیت بررسی گردید. این طرح آزمایشی تحلیل واریانس دو عاملی نام دارد. یافتهها: مدلسازی رایانهای در مقایسه با مدلسازی روی کاغذ، در افزایش توانایی دانش آموزان برای ارائه عبارات منسجم علّی و تشریح بهتر شواهد و ایدههای علمی تأثیر داشته است، و موجب غنی شدن تفکر سیستمی دانشآموزان میگردد. شناخت عناصر استدلال، گرداوری شواهد و ابراز دلائل خود بهمنظور به ثمر رساندن استدلالها، و همچنین انسجام استدلال برای افرادی که با مدلسازی کاغذی آموزش دیدهاند دشوارتر از دانشآموزانی است که به کمک مدلسازی رایانه ای آموزش دیدهاند. یافتهها نشان میدهند ارتباط بین شواهد، از دشوارترین قسمتهای یک استدلال فیزیکی است، در واقع توانائی شاگردان در منسجم کردن، و یکپارچه سازی شواهد بهمنظور خاتمه استدلال و بیان نتیجه کمتر از سایر توانائیهای استدلالی آنها بوده است، البته مدلسازی رایانه ای توانسته به نسبت مدلسازی کاغذی این توانایی را بهبود ببخشد. نتیجهگیری: این طرح نیمه-آزمایشی به ما کمک کرد تا درباره تفاوتهای استدلالهای علّی بین دو گروه مختلف، به نتایج مهمی دست پیدا کنیم. بهکارگیری ابزارهای رایانهای میتواند از عهده یادگیری مهارتهای شناختی نسبتاً پیچیده مثل استدلال علّی به خوبی برآید. شبیهسازی رایانهای و مدلهای مفهومی که به کمک رایانهها تولید میشوند میتوانند به شرح و بسط بیشتر پیوندهای علّی و انسجام بیشتر استدلالها در درس فیزیک کمک کنند. از این رو طراحان برنامه درسی و معلمان فیزیک را به استفاده بیشتر از شبیهسازی و مدلسازی رایانهای بهمنظور تقویت تفکر سیستمی در درس فیزیک، و تبیینهای علمی به کمک استدلالهای علّی توصیه میکنیم. | ||
کلیدواژهها | ||
آموزش فیزیک؛ مدلسازی رایانهای؛ تفکر سیستمی؛ استدلال علّی | ||
موضوعات | ||
فناوری آموزش | ||
عنوان مقاله [English] | ||
Improving students' causal reasoning skills with the computer modelling | ||
نویسندگان [English] | ||
M. Jahanifar1؛ M. Hormozi Nejad2 | ||
1Department of education, Faculty of Education and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
2Department of Educational Administration, Faculty of Humanities, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran | ||
چکیده [English] | ||
Background and Objectives: Computer modelling helps a lot in learning comprehensive scientific concepts, including the causal mechanisms of phenomena, which is challenging for novice learners. Despite the many studies that have been published to show the effectiveness of using computers in the classroom, fewer studies have investigated the use of computer modelling and its effects on students' thinking. The causal structure of many natural and physics phenomena, the emphasis of science education standards on systems thinking development, and its improvement in students, the key role of causal reasoning in a better understanding of science, the increasing use of computer technologies in the physics classroom, the rapid development of computer software and Internet systems for modelling and simulating the real world in order to help physics teaching and learning, and to solve the shortcomings of paper modelling with the help of computers, prompted researchers to investigate the effectiveness of using computer modelling in the physics classroom to see how it would improve the students’ causal reasoning. Investigating the effectiveness of computer modelling on students' understanding of causal links and reasoning in physics phenomena is the main goal of this research. Methods: A sample of 80 secondary high school students in the 11th grade was selected and participated in a semi-experimental design, consisting of two classes of 20 students (using computer modelling) and two classes of 20 students (using conceptual modelling on paper). The students' scores of the causal reasoning were collected in pre-test and post-test; to remove the pre-test effect (mental retention of answers), analysis of covariance was used. In this analysis, the effect of the pre-test scores on the post-test scores was first predicted with the help of simple linear regression, and after removing this effect, the difference between the post-test mean values of causal reasoning between the groups was explored with the analysis of variance. In this research, the mean difference was investigated both for the type of modelling (computer and paper) and for gender; therefore, due to having two independent variables, the analysis of covariance was two-way. With this analysis, the effect of the interaction between the gender variable and the teaching method was also measured. Findings: Compared to paper modelling, computer modelling was effective in increasing students' ability to present coherent causal expressions and better explanations of scientific evidence and ideas, and enriched their systems thinking. Recognizing the reasoning elements, gathering evidence and expressing their reasons in order to end reasoning, as well as the coherence of reasoning, were more difficult for students who were trained with paper modelling than for those who were trained with the help of computer modelling. The findings showed that the connection among the pieces of evidence was one of the most difficult parts of physics reasoning. In fact, the student's ability to integrate the pieces of evidence in order to conclude the argument and express the result was less than their other reasoning abilities. However, computer modelling could improve this ability better than paper modelling Conclusion: This quasi-experimental design helped us to reach important conclusions about the differences in causal reasoning between two different groups. Using computer tools can handle the learning of relatively complex cognitive skills such as causal reasoning. Computer simulation and conceptual models that are produced with computers can help to explain more causal links and more coherence of reasoning in physics classrooms. Therefore, we recommend curriculum designers and physics teachers use more computer simulation and modelling in order to strengthen system thinking in physics classrooms, and scientific explanations with the help of causal reasoning. | ||
کلیدواژهها [English] | ||
Physics Education, Computer Modelling, Systems Thinking, Causal Reasoning | ||
مراجع | ||
1] Nguyen H, Santagata R. Impact of computer modeling on learning and teaching systems thinking. J Res Sci Teach. 2021; 58(5): 661–88.
[2] Ramage M, Shipp K. Systems thinkers. London: Springer; 2009.
[3] Amatucci FTA-TT-. Introduction to systems thinking. NV-. Los Angeles, CA: SAGE Publications, Inc.; 2021. (SAGE skills: business).
[5] Kang H, Thompson J, Windschitl M. Creating Opportunities for Students to Show What They Know: The Role of Scaffolding in Assessment Tasks. Sci Educ. 2014; 1(98).
[6] Assaraf O, Orion N. Development of system thinking skills in the context of Earth System education. J Res Sci Teach. 2005; 1(42): 518–60.
[7] Jacobson M, Wilensky U. Complex Systems in Education: Scientific and Educational Importance and Implications for the Learning Sciences. J Learn Sci. 2006; 1(15): 11–34.
[8] Plate R. Assessing individuals’ understanding of nonlinear causal structures in complex systems. Syst Dyn Rev. 2010; 1(26): 19–33.
[10] Eberbach C, Hmelo-Silver C, Jordan R, Taylor J, Hunter R. Multidimensional trajectories for understanding ecosystems. Sci Educ. 2021; 15(105).
[11] Komis V, Ergazaki M, Zogza V. Comparing computer-supported dynamic modeling and ‘paper & pencil’ concept mapping technique in students’ collaborative activity. Comput Educ. 2007; 1(49): 991–1017.
[12] Weintrop D, Beheshti E, Horn M, Orton K, Jona K, Trouille L, et al. Defining Computational Thinking for Mathematics and Science Classrooms. J Sci Educ Technol. 2016; 1(25).
[14] Rosenberg JM, Lawson MA. An investigation of students’ use of a computational science simulation in an online high school physics class. Education Sciences. 2019; 9(1): 49.
[16] De Vocht F, Katikireddi S, McQuire C, Tilling K, Hickman M, Craig P. Conceptualising natural and quasi experiments in public health. BMC Med Res Methodol. 2021; 11(21).
[18] Chiu M-H, Lin J-W. Modeling competence in science education. Discip Interdiscip Sci Educ Res. 2019; 1(1): 1–11.
[19] Kline RB, Little TD. Principles and practice of structural equation modeling. New York: Guilford Press; 2016.
[21] Harrison V, Kemp R, Brace N, Kemp R, Snelgar R. SPSS for Psychologists. SPSS for Psychologists. London: Red Globe Press; 2021.
[22] Nielsen SS, Nielsen JA. Models and Modelling: Science Teachers’ Perceived Practice and Rationales in Lower Secondary School in the Context of a Revised Competence-Oriented Curriculum. Eurasia J Math Sci Technol Educ. 2021; 17(4): 1–18. | ||
آمار تعداد مشاهده مقاله: 275 تعداد دریافت فایل اصل مقاله: 264 |