تعداد نشریات | 11 |
تعداد شمارهها | 210 |
تعداد مقالات | 2,098 |
تعداد مشاهده مقاله | 2,877,176 |
تعداد دریافت فایل اصل مقاله | 2,084,981 |
ارزیابی شبیه سازی مستقیم عددی جریان لایه مرزی دوبُعدی و غیر قابل تراکم با تفاضل محدود فشرده | ||
فناوری آموزش | ||
دوره 3، شماره 1 - شماره پیاپی 9، دی 1387، صفحه 39-48 اصل مقاله (1.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22061/tej.2008.1314 | ||
نویسندگان | ||
محمد جواد مغربی* ؛ احد ضرغامی؛ مجید فیض آبادی فراهانی | ||
دانشکده مکانیک، دانشگاه صنعتی شاهرود ،سمنان،ایران | ||
تاریخ دریافت: 07 خرداد 1399، تاریخ پذیرش: 07 خرداد 1399 | ||
چکیده | ||
معادله بیبعد شده ناویر- استوکس در فرم چرخشی، برای جریان لایه مرزی دو بُعدی صفحهای، به روش مستقیم عددی حل شده است. با در نظر گرفتن پروفیل سرعت در ورودی دامنه محاسباتی، از ضخامت لایه مرزی به عنوان طول مشخصه و از سرعت یکنواخت محیط به عنوان سرعت مشخصه به منظور بی بعد سازی استفاده شده است. معادلات دیفرانسیل حاکم با استفاده از روش اختلاف محدود فشرده در جهات اصلی جریان و عمود بر جریان گسسته شدهاند. از یک نگاشتجبری برای تبدیل دامنه فیزیکی به دامنه محاسباتیاستفاده شده است. جهت توسعه محاسبات در دامنه زمان از روش رانج کوتای فشرده مرتبه سوم استفاده شده است. شرط مرزی خروجی با استفاده از مدل انتقالی تعیین شده است. نتایج شبیه سازی این نوع جریان، با حل بلازیوس مقایسه شده، که صحت کد را نشان میدهد. در این مطالعه مشخصههای جریان لایه مرزی آرام نیز جهت ارزیابی صحت کد، امتحان و با تقسیم کردن طولها و سرعتها به ترتیب با ضخامت لایه مرزی و سرعت یکنواخت محیط، پروفیلها و کانتورهای سرعت و گردابه در دستگاه مختصات بی بعد رسم و خود تشابهی در آنها مشاهده شده است. | ||
کلیدواژهها | ||
شبیه سازی مستقیم عددی؛ جریان الیه مرزی؛ تفاضالت محدود فشرده؛ معادالت ناویر- استوکس؛ خود تشابهی | ||
موضوعات | ||
آموزش فنی حرفه ای | ||
عنوان مقاله [English] | ||
Direct Numerical Simulation of 2D Incompressible Boundary Layer Using Compact Finite Difference | ||
نویسندگان [English] | ||
M.J. Maghrebi؛ A. Zarghami؛ M. Feyzabadi Farahani | ||
Faculty of Mechanics, Shahroud University of Technology, Semnan, Iran | ||
چکیده [English] | ||
The non-dimensional Navier stokes equations in rotational form for the boundary layer flow are solved using direct numerical simulation. The length scale and velocity scale of the base flow the boundary layer thickness and the inviscid velocity outside the layer are used as the length and velocity scales at the inlet boundary of the computational domain are used as two characteristics to define the flow Reynolds number. The governing equations are discritised in the streamwise direction using a sixth order compact finite difference scheme, and in the cross-direction using a mapped compact finite difference scheme. An algebraic mapping is used to map the physical domain into the computational domain .The compact third order of Runge-kutta method is used for the time-advancement purpose. The convective outflow boundary condition is employed to create a non-reflective type boundary condition at the outlet. The simulation results of this flow were compared by Blasius solution that show accuracy program. In this study, also, characteristics of laminar boundary layer flow verification for accuracy program with divided the lengths and velocity by length of plane and uniform velocity of environment respectively. Profiles and contours of velocity and vorticity have planed in flow arrow and self- similar have seen. | ||
کلیدواژهها [English] | ||
Direct numerical simulation, boundary layer flow, compact finite difference, Navier-Stokes equation, self-similarity | ||
مراجع | ||
[1] White F.M., Viscous Fluid Flow, 3rd Edition, McGraw-Hill, New York, 2000. [2] Mathieu J. and Scott J., An Introduction to Turbulent Flow, Cambridge University Press, 2000. [3] Orszag S.A. and Patterson G.S., Numerical simulation of three-dimensional homogeneous isotropic turbulence, Phys. Rev. Lett.,Vol. 28, 1972,PP.76–79,. [4] Rogallo R.S., Numerical experiments in homogeneous turbulence, NASA TM 81315, 1981. [5] Kim J., Moin P., and Moser R., “Turbulence statistics in fully developed channel flow at low reynolds number ” , Journal of Fluid Mech., Vol. 177, 1981, pp. 133 –166. [6] kreplin H. and Eckelmann H., “Behaviour of the three fluctuating velocity components in the wall region of a turbulent channel flow ” , Physics of Fluids, Vol. 22, 1979, pp. 1233- 1239. [7] Spalart R., “Direct simulation of a turbulent boundary layer up to Re=1410 ”, Journal of Fluid Mech., Vol. 187, 1988, pp. 61–98. [8] Le H., Moin P. and Kim J., “Direct numerical simulation of turbulent flow over a backwardfacing step”, Journal of Fluid Mech , Vol. 330, 1997, pp. 349–374. [9] Na Y. and Moin P., Direct numerical simulation of turbulent boundary layers with adverse pressure gradient and separation. Rep. TF-68, Thermosci. Div., Dept. Mech. Eng., Stanford, 1996. [10] Feiereisen W.J., Reynolds W.C., and Ferziger J.H., Numerical simulation of a compresssible,homogeneous turbulent shear flow. Rep. TF-13, Thermosci. Div., Dept. Mech. Eng., Stanford, 1981. [11] Reynolds W.C., "The Potential and Limitations of Direct and Large Eddy Simulations ". In J.L. Lumley, Turbulence at the Crossroads, 1990, pp. 313-343. Springer, New York. [12] Maghrebi M.J., A Study of Evolution of Intense Focal Structures in Spatially-Developing Three -Dimensional Planer Wake, PhD thesis, Department of Mechanical Engineering, Monash University, Melbourne, Australia, 1999. [13] Bartles RH. and Stewart G.W., "Solution of the Matrix Equation AX+XB=C", Communications of the ACM, Vol.15, No. 9, 1972. [14] Lele S.K., “ Compact Finite Difference Scheme with Spectral-Like Resolution”, Journal of Computational Physics,Vol. 103, 1992, pp.16- 12. [15] Wray A., and Hussaini M.Y., Numerical Experiments in Boundary Layer Stability, Proc. R. Soc. Lond. A, Vol. 392, 1984, pp 373-389. [16] Howarth L., "On the solution of the Laminar Boundary – Layer Equation", Proceedings of the Royal Society of London , A164, 1983, pp. 547-479 [17] Panton R.L., Incompressible Flow, Wiley, New York, 1984. [18] Schlichting H., and Gersten K., Boundary Lay | ||
آمار تعداد مشاهده مقاله: 280 تعداد دریافت فایل اصل مقاله: 219 |