| تعداد نشریات | 11 |
| تعداد شمارهها | 227 |
| تعداد مقالات | 2,290 |
| تعداد مشاهده مقاله | 3,551,384 |
| تعداد دریافت فایل اصل مقاله | 2,597,998 |
A vibration-based fault diagnosis method for rolling bearings via optimized wavelet-SVM fusion | ||
| Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 06 مهر 1404 اصل مقاله (1.05 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22061/jcarme.2025.10582.2401 | ||
| نویسندگان | ||
| A. Haitao Zhang* 1؛ B. Li Guan1؛ C. Long Chang2 | ||
| 1College of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing , China | ||
| 2Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China | ||
| تاریخ دریافت: 20 دی 1402، تاریخ بازنگری: 27 شهریور 1404، تاریخ پذیرش: 06 مهر 1404 | ||
| چکیده | ||
| Rolling bearings are critical components of rotating machinery, and their health status directly affects the operational reliability of equipment. This paper proposes an optimized wavelet-SVM fault diagnosis method based on multi-source vibration signal fusion: Three-channel inputs are constructed by synchronously collecting vibration signals from the drive end and fan end, along with their differential signals; Wavelet packet decomposition is utilized to extract frequency-domain features such as unit node energy entropy and wavelet coefficient standard deviation, while dimensionless indicators independent of rotational speed (kurtosis factor/waveform factor/impulse factor) are introduced to enhance time-domain characterization; The fused features are input into an RBF-SVM classifier after dimensionality reduction via PCA (retaining 99% variance, reducing dimensions from 102 to 4). Experiments indicate that on the CWRU dataset, this method achieves 97.0% precision, 96.9% recall, and an F1-score of 96.9% (representing a 2.9% improvement over single-source input methods); Although there is a 2.4% absolute accuracy gap compared to deep learning solutions, it possesses significant edge advantages—memory usage is only 12KB and inference latency is 0.6ms—providing a high-precision, low-cost embedded solution for rotating machinery fault diagnosis | ||
| کلیدواژهها | ||
| Statistical features؛ Wavelet packet decomposition؛ Gaussian kernel function؛ Principal component analysis؛ Prediction accuracy | ||
| مراجع | ||
|
| ||
|
آمار تعداد مشاهده مقاله: 61 تعداد دریافت فایل اصل مقاله: 41 |
||