
تعداد نشریات | 11 |
تعداد شمارهها | 225 |
تعداد مقالات | 2,259 |
تعداد مشاهده مقاله | 3,415,506 |
تعداد دریافت فایل اصل مقاله | 2,471,140 |
A Vibration-Based Fault Diagnosis Method for Rolling Bearings via Optimized Wavelet-SVM Fusion | ||
Journal of Computational & Applied Research in Mechanical Engineering (JCARME) | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 06 مهر 1404 اصل مقاله (1.05 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22061/jcarme.2025.10582.2401 | ||
نویسندگان | ||
Haitao Zhang* 1؛ Li Guan1؛ Long Chang2 | ||
1College of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing , China | ||
2Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China | ||
تاریخ دریافت: 20 دی 1402، تاریخ بازنگری: 27 شهریور 1404، تاریخ پذیرش: 06 مهر 1404 | ||
چکیده | ||
Rolling bearings are critical components of rotating machinery, and their health status directly affects the operational reliability of equipment. This paper proposes an optimized wavelet-SVM fault diagnosis method based on multi-source vibration signal fusion: Three-channel inputs are constructed by synchronously collecting vibration signals from the drive end and fan end, along with their differential signals; Wavelet packet decomposition is utilized to extract frequency-domain features such as unit node energy entropy and wavelet coefficient standard deviation, while dimensionless indicators independent of rotational speed (kurtosis factor/waveform factor/impulse factor) are introduced to enhance time-domain characterization; The fused features are input into an RBF-SVM classifier after dimensionality reduction via PCA (retaining 99% variance, reducing dimensions from 102 to 4). Experiments indicate that on the CWRU dataset, this method achieves 97.0% precision, 96.9% recall, and an F1-score of 96.9% (representing a 2.9% improvement over single-source input methods); Although there is a 2.4% absolute accuracy gap compared to deep learning solutions, it possesses significant edge advantages—memory usage is only 12KB and inference latency is 0.6ms—providing a high-precision, low-cost embedded solution for rotating machinery fault diagnosis | ||
کلیدواژهها | ||
Statistical features؛ wavelet packet decomposition؛ Gaussian kernel function؛ Principal component analysis؛ Prediction accuracy | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 4 |