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Rolling bearings are critical components of rotating machinery, and their health 

status directly affects the operational reliability of equipment. This paper 

proposes an optimized wavelet-SVM fault diagnosis method based on multi-

source vibration signal fusion: Three-channel inputs are constructed by 

synchronously collecting vibration signals from the drive end and fan end, along 

with their differential signals; Wavelet packet decomposition is utilized to 

extract frequency-domain features such as unit node energy entropy and wavelet 

coefficient standard deviation, while dimensionless indicators independent of 

rotational speed (kurtosis factor/waveform factor/impulse factor) are introduced 

to enhance time-domain characterization; The fused features are input into an 

RBF-SVM classifier after dimensionality reduction via PCA (retaining 99% 

variance, reducing dimensions from 102 to 4). Experiments indicate that on the 

CWRU dataset, this method achieves 97.0% precision, 96.9% recall, and an F1-

score of 96.9% (representing a 2.9% improvement over single-source input 

methods); Although there is a 2.4% absolute accuracy gap compared to deep 

learning solutions, it possesses significant edge advantages—memory usage is 

only 12KB and inference latency is 0.6ms—providing a high-precision, low-

cost embedded solution for rotating machinery fault diagnosis. 
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1. Introduction  

 
Rolling bearings are key rotating components in 

mechanical equipment, serving as indispensable 

parts in various types of rotating machinery, 

while also being a significant source of 

equipment failures. Statistics show that 

approximately 45-55% of failures in rotating 

machinery can be attributed to rolling bearing 

failures [1]. Therefore, effective fault diagnosis 

of bearings is a crucial measure for maintaining 

the normal operation of rotating machinery and 

reducing downtime [2]. 

Fault diagnosis methods for bearings are 

primarily divided into two categories, namely 

model-based methods and data-driven methods 

[3, 4]. Among them, model-based methods 

typically rely on precise fault mechanism models 

to represent the faults and phenomena of 

monitored components through mathematical 
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approaches. These methods require extensive 

prior knowledge, and constructing an accurate 

fault mechanism model capable of adapting to 

changes in operating environments and 

mechanical physical structures is extremely 

difficult. In contrast, data-driven methods do not 

require consideration of the fault mechanism. 

They can achieve fault diagnosis solely based on 

condition signals (such as vibration signals, 

generally shown in Fig. 1). 

However, data-driven fault diagnosis methods 

also face several challenges, such as: 

①Limitations of edge computing devices. In 

industrial scenarios, fault detection for rotating 

components like bearings still primarily relies on 

sensor + microcontroller hardware as the 

underlying support, with microcontrollers 

typically featuring a main frequency <200 MHz, 

SRAM < 256KB, and power consumption 

<100mW. Furthermore, the requirement for 

bearing fault detection inherently demands that 

the detection model possesses low-latency 

characteristics. 

② Interference from the noise of surrounding 

equipment. In industrial settings, the collection 

of bearing vibration signals inevitably suffers 

from noise interference from other nearby 

equipment, necessitating that the employed 

method exhibits a certain level of noise 

immunity. 

③Limitations on model generalizability. Within 

industrial environments, bearings operate under 

varying rotational speeds, fault types, and loads, 

requiring the method used to possess sufficient 

generalization ability to adapt to as many 

operating conditions as possible. 

 

 
Fig. 1. Sensor layout under actual operating 

conditions. 

 
To overcome the aforementioned shortcomings, 

this paper designs a lightweight fault diagnosis 

model based on multi-source vibration signals, 

with the main contributions as follows: 

①Mitigating noise interference at the data level 

through data augmentation. The model inputs in 

this work are: the vibration signal from the fan 

end, the vibration signal from the drive end, and 

the difference between the vibration signals from 

the fan end and drive end. This approach 

significantly reduces the challenges posed by 

common-mode noise to model prediction. 

Additionally, during model training, 10dB white 

noise is randomly added to the original vibration 

signals to further enhance model robustness. 

② I Employing refined feature engineering to 

extract detailed characteristics of the vibration 

signals from both time and frequency domains 

while denoising. For time-domain features, in 

addition to commonly used metrics such as mean, 

variance, peak, maximum, and minimum values, 

dimensionless indicators independent of 

rotational speed are introduced, including 

kurtosis factor, crest factor, waveform factor, 

impulse factor, and clearance factor.  

For frequency-domain features, statistics 

insensitive to sampling frequency are also 

adopted, such as wavelet coefficient mean, 

wavelet coefficient standard deviation, and unit 

node energy entropy. 

③Incorporating PCA for feature dimensionality 

reduction between feature extraction and 

classifier prediction to further reduce 

computational demands, enabling the model to 

be directly deployed on battery-powered edge 

devices. This paper utilizes a total of 10 time-

domain statistical features and 3 frequency-

domain statistical features. When employing a 3-

level wavelet packet decomposition, the total 

number of features amounts to: 

3×23×3+3×10=102. To further reduce the 

computational load for the classifier, PCA 

dimensionality reduction is applied, reducing the 

102-dimensional vector to 4 dimensions. 

 
2. Related works 

 
In recent years, deep learning-based intelligent 

fault diagnosis methods have been widely 

adopted in the field of mechanical fault diagnosis 

within academia due to their ability to 
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automatically learn features from data without 

requiring specialized expertise [5]. For instance, 

models such as GRU [6], LSTM [7], and 

Transformer [8] can adaptively capture features 

from time series and iteratively optimize model 

detection accuracy through gradient 

backpropagation via loss functions. 

For example, Chen [9] utilized a Deep Graph 

Convolutional Network (DGCN) to classify 

compound faults in rolling bearings and 

achieved promising results. Wang [10] proposed 

a CNN-GRU network that leverages CNN to 

capture local features and GRU to capture global 

features of time series, thereby enabling fault 

classification. 

However, these deep learning-based models face 

deployment challenges (requiring frameworks 

like TensorFlow Lite, and even after INT8 

quantization, model size >500KB) and high 

computational complexity (single inference 

>100ms).  

In contrast, the technical approach using 

traditional feature engineering combined with 

SVM remains valuable, reflected in: low 

memory footprint (model size <50KB), low 

computational complexity (single 

inference ~10ms), and low difficulty in edge 

deployment (implemented in pure C code, no 

dependency libraries required). 

Recent research (2019~2025) adopting similar 

technical approaches includes: Li [11] integrated 

the concept of fusion stacked representation 

learning (S-RL) with Least Squares Support 

Vector Machine (LS-SVM) to propose the 

DSLS-SVM model. This model integrates 

multiple LS-SVM modules via a stacked 

structure. Experiments on the CWRU dataset 

demonstrated the model's good effectiveness and 

applicability. However, this method only 

considered time-domain features of vibration 

signals, neglecting frequency-domain features, 

making its predictions susceptible to time 

window size and sensor placement, potentially 

compromising robustness.  

Shao [12] proposed an intelligent rolling bearing 

fault diagnosis method using Wavelet Packet 

Transform (WPT) to extract frequency-domain 

information and an Improved Particle Swarm 

Optimization (IPSO) algorithm to optimize 

SVM hyperparameter selection. Experiments 

showed the significant effectiveness of the 

proposed method. However, it did not account 

for noise interference and time-domain features 

under actual operating conditions, potentially 

limiting its generalization ability in real-world 

scenarios. Li [13] first employed WPT to extract 

frequency-domain information, then merged 

multi-scale wavelet coefficients into a one-

dimensional vector. This feature vector was 

subsequently converted into a two-dimensional 

grayscale image, and finally, a Convolutional 

Neural Network (CNN) was constructed as the 

classifier for rolling bearing fault diagnosis. 

However, this method requires a fixed image 

size as CNN input, making it difficult to adapt to 

different sampling frequencies. Sun [14] used 

EMD for vibration signal denoising, extracted 

features from the denoised signal using kurtosis 

and energy as statistics, and employed SVM as 

the classifier for fault diagnosis, achieving 99.3% 

recognition accuracy on the CWRU dataset. 

However, this method neglected the frequency-

domain characteristics of the signal. Wu [15] 

proposed an intelligent fault classification and 

diagnosis model for rolling bearings based on 

Fast Fourier Transform (FFT) and a temporal 

convolutional network with squeeze-and-

excitation (SE-TCN) attention mechanism, 

using SVM as the classifier. FFT is applied 

within a time window to obtain current 

frequency-domain features, then SE-TCN 

iteratively extracts frequency-domain features 

for sliding time windows, followed by SVM for 

fault identification, achieving over 99% 

classification accuracy on the CWRU dataset. 

However, this method did not consider sensor 

placement and noise interference, and the 

inclusion of TCN also imposes computational 

pressure on edge devices. 

The method proposed in this paper achieves a 

better balance between detection accuracy, 

computational complexity, and robustness. 

 
3. Methods 

3.1. Pipeline overview 

 
The method used in this paper is illustrated in Fig. 

2. It takes as input the vibration signal from the 

fan end, the vibration signal from the drive end, 

and the difference between the fan end and drive 
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end vibration signals. Wavelet packet 

decomposition is employed to extract frequency-

domain features. Threshold-based denoising is 

applied to denoise the three signals, which are 

then reconstructed back to the time domain. 

Subsequently, time-domain statistical features 

are extracted from the denoised time-domain 

signals. The frequency-domain and time-domain 

features are then concatenated. This combined 

feature set undergoes dimensionality reduction 

via PCA (to reduce computational load for the 

classifier). Finally, fault classification is 

performed by an SVM. 
 

3.2. Feature extraction in frequency domain 

based on wavelet packet decomposition 
 

The wavelet transform has extensive 

applications in research fields such as signal 

analysis and image processing. It possesses the 

ability to highlight local features of signals in 

both the time and frequency domains. The 

formula for the discrete wavelet transform is 

shown in Eq. (1): 
 

𝑊𝑇𝑓(𝑎0
𝑗
, 𝑘𝜏𝑜) = ∫ 𝑓(𝑡)𝜓

𝑎0
𝑗
,𝑘𝜏𝑜

∗ (𝑡) 𝑑𝑡       (1) 

In the equation, 𝑊𝑇𝑓(𝑎0
𝑗
, 𝑘𝜏𝑜)  represents the 

wavelet transform coefficient, where 𝑎0
𝑗
 denotes 

that at scale 𝑗 , the sampling interval can be 

expanded by a factor of 𝑎0
𝑗
. 𝑓(𝑡) represents the 

signal in the time domain, 

and 𝜓
𝑎0
𝑗
,𝑘𝜏𝑜

∗ (𝑡)  represents the wavelet basis 

function corresponding to the specific scale and 

translation. 
 

 
Fig. 1. Overall pipline. 

 

Building upon this foundation, this paper selects 

wavelet coefficient mean, wavelet coefficient 

standard deviation, and per-node energy entropy 

as frequency-domain feature statistics. Their 

calculation formulas are as follows: 

Wavelet coefficients mean： 
 

𝜇𝑗 =
1

𝑁𝑗
∑ |𝑐𝑗,𝑘|
𝑁𝑗

𝑘=1          (2) 

 

In the formulas: 𝑗 represents the decomposition 

level; 𝑁𝑗  represents the total number of 

coefficients at level 𝑗; 𝑐𝑗,𝑘 represents the wavelet 

coefficient at position 𝑘 of level 𝑗. 
Wavelet coefficients standard deviation [16]: 
 

𝜎𝑖 = √
1

𝑁𝑗−1
∑ (|𝑐𝑗,𝑘| − 𝜇𝑗)

2𝑁𝑗

𝑘=1       (3) 

 

Per-Node energy entropy [17]: 
 

𝐸𝑗 =
1

𝑁𝑗
∑ (𝑐𝑗,𝑘)

2𝑁𝑗

𝑘=1          (4) 

 

3.3. Threshold method of small coefficients 
 

It is a technique whose core involves processing 

each wavelet coefficient independently. The 

computational procedures for two representative 

methods—hard thresholding and soft 

thresholding—are as follows: 

Hard threshold: 
 

𝑦 = {
𝑥,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,|𝑥| > 𝜆
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,|𝑥| < 𝜆

       (5) 

 

Soft threshold: 
 

𝑦 = {
𝑠𝑖𝑔𝑛(𝑥)(|𝑥| − 𝜆), |𝑥| > 𝜆

0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,|𝑥| < 𝜆
       (6) 

 

After extracting the frequency-domain statistics 

of the vibration signal using wavelet packets, 

threshold denoising is applied to remove high-

frequency noise from the signal, which is then 

reconstructed in the time domain. 
 

3.4. Feature extraction in time domain based on 

statistical characteristic 
 

Time-domain information represents the signal 

with the time axis as the abscissa, providing an 
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intuitive visualization of the vibration signal's 

waveform. Time-domain analysis aims to extract 

statistical features from the signal in the time 

domain, serving as a means to determine the 

operational state of the bearing. Given a time-

domain signal {𝑥𝑖}, 𝑖 = 1,2,⋯ ,𝑁 , the time-

domain feature statistics used in this paper are: 

Maximum： 

 

𝑚𝑎 = 𝑚𝑎𝑥,(𝑥(𝑖))          (7) 

 

Minimum： 

 

𝑚𝑖 = 𝑚𝑖𝑛,(𝑥(𝑖))          (8) 

 

Mean： 

 

𝑚𝑒 = 𝑚𝑒𝑎𝑛,(𝑥(𝑖))          (9) 

 

Peak： 

 

𝑝𝑘 = 𝑚𝑎 −𝑚𝑖          (10) 

 

Variance： 

 

𝑣𝑎 = 𝑣𝑎𝑟,(𝑥(𝑖))         (11) 

 

Waveform factor [18]： 

 

𝑆 = 𝑟𝑚/𝑎𝑣          (12) 

 

Peak factor： 

 

𝐶 = 𝑝𝑘/𝑟𝑚           (13) 

 

Kurtosis factor [19]： 

 

𝐾𝑟 = 𝑠𝑢𝑚(𝑥(𝑖)4)/√𝑠𝑢𝑚(𝑥(𝑖)2)    (14) 
 

Impulse factor [20]： 
 

𝐼 = 𝑝𝑘/𝑎𝑣          (15) 
 

Clearance factor [21]： 
 

𝐿 = 𝑝𝑘/𝑥𝑟          (16) 
 

3.5 Feature dimensionality reduction based on 

principal component analysis. 

 
For the three sets of vibration signals (fan end 

signal, drive end signal, and their differential 

signal), the combined time-frequency domain 

features total 102 dimensions. This includes 30 

time-domain features (10 time-domain statistics 

per signal, with 3 input signals: 3 × 10 = 30) and 

72 frequency-domain features (3 frequency-

domain statistics per node, with a 3-level 

wavelet packet decomposition, where each 

signal has 23 nodes: 3 signals × 8 nodes × 3 

statistics = 72).  

To better adapt to industrial scenarios with low 

computational resources, this paper incorporates 

PCA for feature dimensionality reduction 

between feature extraction and classifier 

prediction. This further reduces computational 

demands, enabling the model to be directly 

deployed on battery-powered edge devices. 

The specific process is described below. 

Step 1: Input the feature matrix, denoted 

as 𝑋  (where rows represent samples and 

columns represent features), and determine the 

cumulative contribution rate (set to 99% in this 

experiment). 

Step 2: Transpose the feature matrix X and 

perform zero-mean normalization. Calculate the 

covariance matrix 𝐷 =
1

𝑚
𝑋𝑇𝑋. 

Step 3: Solve for the eigenvalues λ and 

corresponding eigenvectors of the covariance 

matrix 𝐷. 

Step 4: Calculate the contribution rate and 

cumulative contribution rate. Arrange the 

eigenvectors into a transformation matrix W in 

descending order of their corresponding 

eigenvalues. The expressions for the 

contribution rate and cumulative contribution 

rate are given by Eqs. (17 and 18), respectively. 

 

𝑎𝑖 =
𝜆𝑖

∑ 𝜆𝑗
𝑛
𝑗=1

           (17) 

𝛽𝑗 =
∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑗
𝑛
𝑗=1

            (18) 

 

In Eqs. (17, 18), 𝑎𝑖  represents the variance 

contribution rate of the 𝑖 -th principal 

component, and 𝛽𝑗  represents the cumulative 
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contribution rate of the 𝑗 -th principal 

component. 
 

3.6. Bearing fault classification based on 

support vector machine 
 

The fundamental idea of SVM is to define the 

optimal linear hyperplane. The algorithm for 

finding this optimal hyperplane is formulated as 

a convex optimization problem. Furthermore, 

based on the Mercer kernel expansion, a 

nonlinear mapping 𝜑 projects the sample space 

into a high-dimensional or even infinite-

dimensional feature space (Hilbert space), which 

is a generalization of Euclidean space. This 

enables the application of linear learning 

methods in the feature space to solve highly 

nonlinear classification and regression problems 

in the original sample space. 

The mathematical model of the nonlinear SVM 

based on the kernel method is shown in Eq. (19): 
 

𝑚𝑎𝑥𝐽(𝛼) = max(∑ 𝛼𝑖
𝑙
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 (𝜑(𝑋𝑖) ∙ 𝜑(𝑋𝑗))
𝑙
𝑖=1,𝑗=1 )    (19) 

𝑠, 𝑡, ∑ 𝛼𝑖𝑦𝑖
𝑙
𝑖=1 = 0,(𝐶 ≥ 𝛼𝑖 ≥ 0, 𝑖 = 1,⋯ 𝑙)  

 

where 𝑙  denotes the number of samples, 𝑋𝑖 ∈
𝑅𝑙 , 𝑦𝑖 ∈ {+1,−1}, 𝛼𝑖  represents the lagrange 

multipliers, 𝐶  is the penalty parameter, 

and 𝜑(𝑋𝑖)  represents the nonlinear 

transformation or mapping of 𝑋𝑖. 
The optimal hyperplane decision function is 

finally derived as shown in Eq. (20): 
 

𝑀(𝑋) = 𝑠𝑔𝑛,(∑ 𝑎𝑖
∗

𝑆𝑢𝑝𝑝𝑜𝑟𝑡
𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑦𝑖(𝐾(𝑋, 𝑌)) + 𝑏∗)

           (20) 
where K (X, Y) represents the Mercer kernel 

function, as shown in Eq. (21): 

 
𝐾(𝑋, 𝑌) = (𝜑(𝑋𝑖) ∙ 𝜑(𝑋𝑗))    (21) 

 
4. Experiments and Results 

4.1. Dataset introduction and evaluation metrics 

 
To validate the classification performance of the 

proposed method, the Case Western Reserve 

University (CWRU) bearing dataset [22] is used 

to evaluate the proposed fault diagnosis 

approach. This dataset collects vibration signals 

from SKF6205 bearings (SKF Group, 

Gothenburg, Sweden) using accelerometers at a 

sampling frequency of 12 kHz. It includes four 

load conditions: 0 hp, 1 hp, 2 hp, and 3 hp, 

corresponding to motor speeds set at 1797 r/min, 

1772 r/min, 1750 r/min, and 1730 r/min, 

respectively. The four bearing states adopted in 

the experiment are categorized as: Normal Class 

(NC), Inner Race Fault (IF), Outer Race Fault 

(OF), and Rolling Element Fault (RF).  

The fault diameters are further divided into 7 

mils, 14 mils, and 21 mils, resulting in a total of 

9 fault types. Example vibration signals 

corresponding to these states are shown in Fig. 

3. Additionally, to enhance model robustness, 

10dB white noise is randomly added to the 

original vibration signals during model training 

to improve the model's noise immunity. 

To measure model accuracy, precision, recall, 

and F1-score are used for evaluation. The 

relevant calculation formulas are given by Eqs. 

(22-24). 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (22) 

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (23) 

 

𝐹1 = ,
2

1 𝑃⁄ +1 𝑅⁄
         (24) 

 

 
Fig. 2. Examples of vibration signals for 9 different 

fault types. 

 



JCARME                                                                                                                                  Vol. X, No. X 

In Eqs. (22-24), TP (True Positive) represents 

the number of positive samples correctly 

predicted; FP (False Positive) represents the 

number of negative samples incorrectly 

predicted as positive; FN (False Negative) 

represents the number of positive samples 

incorrectly predicted as negative. 

 

4.2. Data splitting 

 
The calculation formulas for the outer race fault 

frequency, inner race fault frequency, and rolling 

element fault frequency are given by Eqs. (25-

27), respectively: 

 

𝑓𝑜 = 0,5 × 𝑧 × 𝑓 × (1 − 𝑑
𝐷⁄ 𝑐𝑜𝑠𝛼)               (25) 

𝑓𝑖 = 0,5 × 𝑧 × 𝑓 × (1 + 𝑑
𝐷⁄ 𝑐𝑜𝑠𝛼)            (26) 

𝑓𝑟 =
𝐷

𝑑⁄ × 𝑓 × (1 − (𝑑 𝐷⁄ )
2

𝑐𝑜𝑠2𝛼)           (27) 

 

In the equations, d represents the rolling element 

diameter, D represents the pitch diameter, α 

represents the bearing contact angle, and z 

represents the number of rolling elements. For 

the SKF6205 bearing used in the CWRU dataset, 

f_o≈104HZ, f_i≈158HZ, f_r≈13.4HZ. To 

capture periodic impacts, the minimum sampling 

window must contain at least 3 complete fault 

cycles. Therefore, the minimum window size is: 

3⁄min (f_o,f_i,f_r ) ≈224ms 

Secondly, to avoid data leakage caused by 

window overlap, the sample segmentation 

strategy employed in this experiment uses fixed-

length overlapping framing. Specific steps are 

detailed in Table 1. 

Finally, the dataset partitioning strategy is shown 

in Fig. 4. Additionally, reproducibility is ensured 

by setting a random seed to "1234". 

 
Table 1. Sample partitioning procedure. 

Input: signal, window_size, overlap_ratio 

Segments = [,] 
s = floor(window_size, × (1 − overlap_ratio)) 
for,start,from,0,to,len(signal)

− windowsize; step = s: 
,,,,,,,segment = signal[start: start

+ window_size] 
,,,,,,,egments, append(segment) 
Output:segments 

 
Fig. 3. Dataset partitioning scheme. 

 

4.3. Experimental environment and parameter 

setting 

 
Regarding experimental software and hardware, 

the Python version used is 3.10.12, Scikit-learn 

version is 1.3.0, NumPy version is 1.24.3, and 

the random seed for dataset splitting is set to 

1234. At the sample segmentation level, the 

fixed-length overlapping framing method is 

adopted, with a window size of 4000 points and 

a step size of 2800 points. 

For hyperparameter tuning at the model level, a 

grid search method is employed for 

optimization. The optimal combination is 

selected based on 5-fold cross-validation from 

the search ranges. After PCA dimensionality 

reduction, the 102-dimensional features are 

reduced to 4±0 dimensions (cumulative variance 

of 99.3%). The optimal value for the 

regularization parameter "C" is 55; the optimal 

value for the RBF kernel parameter "γ" is 0.05. 

The search range for the regularization 

parameter "C" was: {0.01, 0.1, 1, 10, 45, 55, 100, 

300, 500}. The search range for the RBF kernel 

parameter "γ" was: {0.01, 0.05, 0.1, 0.5, 1, 5}. 

The F1-score served as the selection criterion for 

the 5-fold cross-validation. 
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Hyperparameter selection at the time-frequency 

feature processing level was determined through 

subsequent comparative experiments. The final 

hyperparameters chosen are: using the "db3" 

wavelet basis for 3-level decomposition and soft 

thresholding denoising. 
 

4.4. Test set experiments results 
 

The confusion matrix of the proposed method on 

the final test set is shown in Fig. 5. The 

prediction performance for each fault type is 

detailed in Table 2. Overall, Precision is 97.0%, 

Recall is 96.9%, and the F1-score is 96.9%. 

Regarding detection accuracy, the proposed 

method does not advance beyond deep learning-

based paradigms (which typically exceed 99% 

accuracy).  

However, this work adopts a traditional feature 

engineering + SVM approach, offering 

advantages over deep learning in lower memory 

consumption, reduced computational 

complexity, and simplified edge deployment—

aligning better with practical industrial 

requirements. 

Using only frequency-domain features from the 

drive-end vibration signal as input with an SVM 

classifier (baseline model), the confusion matrix 

on the test set is shown in Fig. 6. The baseline 

model achieves 94.1% Precision, 93.9% Recall, 

and a 94.0% F1-score. 

In summary, addressing practical production 

needs, the proposed model improves upon the 

feature-engineering baseline (Precision: 94.1% 

 

 
Fig. 4. Confusion matrix of the proposed pipeline on 

the test set. 

→ 97.0%; Recall: 93.9% → 96.9%; F1-score: 

94.0% → 96.9%). While its accuracy lags 

behind deep learning, its low memory footprint 

(12KB), minimal computational overhead 

(0.6ms inference), and ease of edge deployment 

retain significant practical value. 
 

Table 2. Per-class fault prediction report. 

Fault Category 
Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 
Support 

Rolling element 

fault with 7 mils 

diameter 

92.4 97.3 94.8 75 

Rolling element 

fault with 14 mils 

diameter 

93.1 89.3 91.2 75 

Rolling element 

fault with 21 mils 

diameter 

95.8 90.1 93.1 75 

Inner race fault 

with 7 mils 

diameter 

98.7 100.0 99.3 75 

Inner race fault 

with 14 mils 

diameter 

100.0 100.0 100.0 75 

Inner race fault 

with 21 mils 

diameter 

98.7 100.0 99.3 75 

Outer race fault 

with 7 mils 

diameter 

100.0 97.3 98.6 75 

Outer race fault 

with 14 mils 

diameter 

100.0 100.0 100.0 75 

Outer race fault 

with 21 mils 

diameter 

93.5 96.0 94.7 75 

Normal 97.4 98.7 98.0 75 

 

 
Fig. 5. Confusion matrix of the baseline on the test 

set. 



JCARME                                                                                                                                  Vol. X, No. X 

4.5. Comparative experiments and ablation 
studies 
 

This section investigates the impact of wavelet 
packet decomposition hyperparameters. Wavelet 
decomposition serves dual purposes: extracting 
frequency-domain features and denoising 
vibration signals via thresholding before 
reconstructing time-domain statistics. Wavelet 
basis and decomposition level require balancing 
denoising efficacy and feature extraction. 
①Denoising Perspective: 3-level decomposition 

offers optimal cost-effectiveness. Table 3 
compares denoising performance (under 10dB 
added white noise) across wavelet bases and 
decomposition levels. Algorithm complexity 
grows exponentially with decomposition depth. 
For real-time processing on microcontrollers, 
levels 3 or 4 are practical. Table 3 shows 
significant denoising improvement from level 2 
to 3 across all bases, while level 4 offers 
marginal gains at double the computation. Thus, 
a 3-level decomposition is selected. 
②Feature Extraction Perspective: As shown in 

 Table 4, the proposed method achieves a lower 
F1-score than CNN-based approaches but 
outperforms traditional nonlinear classifiers, 
while its inference time and model size remain 
suitable for industrial applications. Furthermore, 
ablation studies in Table 5 demonstrate that the 
combination of "db3" with 3-level 
decomposition and soft thresholding achieves an 
optimal balance between algorithmic scale and 
detection accuracy. These findings are consistent 
with the denoising performance summarized in 
Table 3, where "db3" and "sym3" were identified 
as achieving the best denoising performance at 3 
decomposition levels. 
 

Table 3. Comparative Experiments. 

Model 
F1-

score 

Training 

time 

Inference 

time 
Params 

Linear 

SVM 
95.2% 11s 0.2ms 12KB 

Proposed 

method 
96.9% 12s 0.6ms 12KB 

Random 

Forest 
95.8% 9s 1.1ms 11KB 

XGBoost 96.2% 22s 0.9ms 11KB 

1D-CNN 99.3% 9mins 4ms 2.1MB 

Table 4. Denoising Performance Comparison. 

Wavelet 

Basis 

2-Layer Decomposition 3-Layer Decomposition 4-Layer Decomposition 

Soft 

Threshold 

Hard 

Threshold 

Soft 

Threshold 

Hard 

Threshold 

Soft 

Threshold 

Hard 

Threshold 

db2 17.3 17.3 19.4 19.4 21.0 21.0 

db3 17.4 17.4 20.0 20.0 21.7 21.8 

db4 17.4 17.4 19.8 19.9 21.1 21.2 

db5 17.3 17.4 19.8 19.8 21.8 21.9 

db10 17.3 17.3 19.8 19.9 20.9 20.9 

haar 17.3 17.4 19.2 19.2 18.3 18.3 

sym2 17.3 17.3 19.4 19.4 21.0 21.0 

sym3 17.3 17.3 19.9 20.0 21.7 21.8 

sym4 17.3 17.3 19.9 19.9 21.5 21.5 

sym5 17.3 17.3 19.8 19.8 21.8 21.8 

sym6 17.3 17.3 19.8 19.8 21.3 21.3 

coif1 17.3 17.3 19.9 19.9 21.9 21.9 

coif2 17.3 17.3 19.7 19.7 21.1 21.1 

coif3 17.3 17.3 19.9 19.9 20.8 20.7 

bior1.1 17.4 17.4 19.2 19.2 18.3 18.3 

bior2.4 17.2 17.2 19.7 19.7 21.6 21.6 

bior3.3 16.5 16.5 18.4 18.0 19.0 18.9 

rbio1.1 17.4 17.4 19.2 19.2 18.3 18.3 

rbio2.4 17.3 17.3 19.8 19.8 21.6 21.6 

rbio3.3 16.6 16.6 18.4 18.4 17.8 17.8 

rbio4.4 17.3 17.3 19.8 19.8 21.5 21.5 

dmey 17.3 17.3 19.9 19.9 21.2 21.6 



Table 5. Ablation study. 

Wavelet 

basis 

Dimless 

stats 

Multi-Src 

signals 
Denoising PCA SVM Params P R F1 

× × × × × √ 1.5MB 94.1% 93.9% 94.0% 

sym3 √ × × × √ 1.1MB 95.0% 94.9% 94.9% 

sym3 √ √ × × √ 1.5MB 96.2% 97.0% 96.6% 

sym3 √ × √ × √ 1.1MB 95.3% 95.4% 95.3% 

sym3 × × √ × √ 1.1MB 94.8% 95.1% 94.9% 

sym3 √ √ √ × √ 1.5MB 97.4% 97.2% 97.3% 

sym3 √ √ √ √ √ 12KB 96.5% 96.7% 96.6% 

db3 √ × × × √ 1.1MB 95.2% 95.0% 95.1% 

db3 √ √ × × √ 1.5MB 96.8% 97.1% 96.9% 

db3 √ × √ × √ 1.1MB 95.5% 95.6% 95.5% 

db3 × × √ × √ 1.1MB 95.1% 95.2% 95.1% 

db3 √ √ √ × √ 1.5MB 97.8% 97.4% 97.6% 

db3 √ √ √ √ √ 12KB 97.0% 96.9% 96.9% 

5. Conclusions 

 

This study proposes an embedded intelligent 

detection framework for rolling bearing fault 

diagnosis, achieving an effective balance among 

detection accuracy, computational efficiency, 

and noise robustness. The core innovations and 

findings are as follows: 

① Multi-source signal fusion anti-noise 

mechanism. By synchronously acquiring 

vibration signals from the drive end and fan end 

along with their differential signal to construct 

three-channel inputs, and employing wavelet 

decomposition-based hard threshold denoising, 

20.0 dB noise suppression is achieved under 

strong 10 dB noise conditions, significantly 

enhancing the model’s noise immunity. 

② Cross-condition time-frequency domain 

feature engineering. The introduction of 

frequency-domain features (e.g., unit node 

energy entropy and wavelet coefficient standard 

deviation) combined with rotation-invariant 

dimensionless indicators (kurtosis 

factor/waveform factor/impulse factor) 

effectively strengthens time-domain 

characterization and improves model 

generalizability. 

③ Model lightweighting. By incorporating PCA 

for feature dimensionality reduction between 

feature extraction and classifier prediction, the 

proposed model further reduces computational 

demands. The overall model size is only 12 KB 

(1/175 of a CNN model), inference latency is 0.6 

ms (1/7 of a CNN model), and the F1-score 

reaches 96.9% (2.4% lower than CNN), enabling 

direct deployment on battery-powered edge 

devices. 

④ Performance validation. Under identical 10 

dB noise environments, the proposed method 

demonstrates a 2.9% precision increase and a 

3.0% recall improvement compared to the 

baseline model. 

In summary, this research provides a bearing 

fault diagnosis solution deployable directly on 

low-power embedded edge computing 

platforms. Future work will explore lightweight 

detection methods based on deep learning 

paradigms to further deliver high-precision, low-

cost embedded solutions for rotating machinery 

fault diagnosis. 
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