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Article info: Abstract 

The entropy generation analysis of non-Newtonian fluid in rotational flow 

between two concentric cylinders is examined when the outer cylinder is fixed 

and the inner cylinder is revolved with a constant angular speed. The viscosity 

of non-Newtonian fluid is considered at the same time interdependent on 

temperature and shear rate. The Nahme law and Carreau equation are used to 

modeling dependence of viscosity on temperature and shear rate, respectively. 

The viscous dissipation term is adding elaboration to the formerly highly 

associate set of governing motion and energy equations. The perturbation 

method has been applied for the highly nonlinear governing equations of base 

flow and found an approximate solution for narrowed gap limit. The effect of 

characteristic parameter such as Brinkman number and Deborah number on the 

entropy generation analysis is investigated. The overall entropy generation 

number decays in the radial direction from rotating inner cylinder to stationary 

outer cylinder. The results show that overall rate of entropy generation enhances 

within flow domain as increasing in Brinkman number. It, however, declines 

with enhancing Deborah number. The reason for this is very clear, the pseudo 

plastic fluid between concentric cylinders is heated as Brinkman number 

increases due to frictional dissipation and it is cooled as Deborah number 

increases which is due to the elasticity behavior of the fluid. Therefore, to 

minimize entropy need to be controlled Brinkman number and Deborah number. 
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Nomenclature 
Br Brinkman number as frictional dissipation 

parameter of flow (𝐵𝑟 = 𝜇0(𝛺𝑅1)2 𝑘𝑐∆𝑇0⁄  )

Cn Constants of integration, n=0, 1, 2 

Cp Heat capacity 

D Interval across outer and inner cylinders 

De Elasticity force to viscous force ratio 

presented as Deborah number 

(De=λRiΩ/D) 

h Convection heat transfer coefficient  

kc Conductivity heat transfer coefficient  

n Exponent of power law  

Na Nahme number (𝑁𝑎 = 𝛽 𝐵𝑟 ) 

Nu Nusselt number 

P Pressure 

Pe Peclet number (𝑃𝑒 = 𝜌 𝐶𝑝𝛺𝑅1𝐷 𝑘𝑐⁄  )

r Radial coordinate  

R Radius of cylinder 

𝑅𝑒 Main Reynolds number (𝑅𝑒 = 𝑅𝑖𝛺𝐷 𝜈0⁄ )

t Time 

T Temperature  

Ta Taylor number (𝑇𝑎 = 𝑅𝑒2𝜀 )

u Dimensionless velocity vector 

U 

z 

Velocity vector 

Axial distance 
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Greek symbols  
𝛤̇ Rate-of-strain tensor (Γ̇ = ∇𝑈 + (∇𝑈)𝑇) 

Θ Dimensionless temperature 

Φ Thermal dissipation (𝛷 = 𝜏: 𝛻𝑈) 

Ω Angular velocity of inner cylinder 

β Viscosity sensitivity to temperature  

ε Ratio of interval space-to-radius (𝜀 =
𝐷 𝑅1⁄ ) 

η Dimensionless viscosity 

θ Tangential coordinate 

λ Fluid elasticity (relaxation time) 

μ Viscosity 

μ0 Zero-shear-rate viscosity 

μ∞ Infinite-shear-rate viscosity 

ρ Density  

τ Shear stress (𝜏 = 𝜇Γ̇) 

 

Subscripts 
,t Specify partial differentiation of time 

1 Specify interior cylinder 

2 Specify exterior cylinder 

r Specify radial coordinate 

q Specify isoflux for thermal boundary 

condition 

T Specify isothermal for thermal boundary 

condition 

z Specify axial coordinate 

𝜃 Specify circumferential coordinate 

 
1. Introduction  

 

The Circular Couette flow consists of a viscous 

fluid bounded in the narrow gap between two 

revolving cylinders. Circular Couette flow has 

wide applications ranging from desalination to 

magneto-hydrodynamics and also in the 

viscosimetric analysis. Different flow regimes 

have been categorized, over the years, including 

twisted Taylor vortices, wavy outflow 

boundaries, etc. It has been a well-researched 

and documented flow in fluid dynamics [1]. The 

detailed investigation and analysis of Circular 

Couette flow have also been a charming subject 

in the non-linear fluids field. For a sample, the 

influence of an axial flow on the stability of the 

flow between concentric cylinders is explored 

for pseudoplastic fluids as mentioned in the 

literature [2]. 

The entropy is one of the most important 

characteristics in thermodynamics, due to 

closely associate with the thermodynamic 

irreversibility. On the other hand, it is directly 

pertinent to the availability or exergy destruction 

in thermal systems. One of the modern thermal 

design techniques is to reduce exergy destruction 

as a means of enhancing thermodynamic 

performance, which is referred to as entropy 

generation minimization. For the heat exchanger 

interacts with the surrounding flow field, the 

entropy generation minimization allows the 

combined thermal resistance and pressure drop 

influence to be evaluated simultaneously. 

Tasnim et al. [3] investigated the hydro-

magnetic effects on entropy generation inside 

a porous channel. In their study to present 

expressions for temperature and entropy 

generation number and irreversibility 

distribution ratio, the governing equations were 

simplified and solved analytically. Mahmud and 

Fraser [4] studied the forced convection and 

second law characteristics of fluid flow inside a 

channel made of two parallel plates. Carrington 

and Sun [5] presented an analytical phrase for the 

entropy generation to study the second law 

analysis in internal and external flows. The 

influence of entropy generation in boundary 

layer flows was investigated by Arpaci and 

Selamet [6]. They illustrated the entropy 

generation in forced convection heat transfer 

resulted from the contribution of both 

temperature gradient and fluid friction. Abu-

Hijleh [7] presented numerical work to evaluate 

the entropy generation for the different 

magnitude of the buoyancy parameter, Reynolds 

number and cylinder dimension in an air cross 

flow. Khalkhali et al. [8] developed a 

thermodynamic model of conventional 

cylindrical heat pipes based on the second law of 

thermodynamics and studied the entropy 

generation in a heat pipe system. Ashrafi [9] 

examined the heat transfer of viscoplastic fluids 

in the Circular Couette flow while viscous 

dissipation term considered through the energy 

equation. Hazbavi [10] presented numerical 

work to investigate the applied magnetic force 

effects for a nonlinear viscoelastic fluid in the 

Circular Couette flow. Kosarineia et al. [11] 

investigated the effects of the applied magnetic 

field for magneto-micropolar fluid between 

inclined parallel porous plates. The highly 

nonlinear coupled governing equations are 

solved numerically by explicit Runge–Kutta and 

https://en.wikipedia.org/wiki/Magnetohydrodynamics
https://reader.elsevier.com/reader/sd/4372F96FAF2FA1B1D62421E42D4F4FC641F4E0FAF0A458627C3FECBD626DD21E3622707544B255FE45C5EB7591B8E394#pf6
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the velocity, microrotation, and temperature 

results are used to evaluate second law analysis.  

Commonly, the zero-shear-rate viscosity of 

industrial fluids such as melts and polymeric 

materials are several magnitude orders higher 

than that of the water. The thermal conductivity 

of polymeric solutions is in order of 0.1 W/m.K; 

in fact, the thermal conductivity of polymeric 

solutions is poor. The weak conduction of the 

frictional heat causes a considerable temperature 

rise in flowing industrial fluids [12]. Mostly, this 

enhancing temperature exponentially leads to a 

decline in the fluid viscosity. Typically, thermal 

dissipation is neglected in most cases of Non-

Newtonian fluid researches, although 

temperature gradients lead to viscosity 

variations, and it can considerably vary the 

corresponding isothermal flow resulting in new 

instabilities forms. The thermal dissipation term 

of Newtonian fluids is always positive. It adopts 

positive or negative values with non-Newtonian 

liquids (viscoelastic material). On the other 

hand, the viscous dissipation quantity of 

Newtonian fluids is always positive and 

therefore represents an irreversible mechanical 

depreciation into internal energy. The viscous 

dissipation quantity of viscoelastic fluids does 

not have to be positive, since some energy may 

be stored as elastic energy [13]. Reddy et al. [14] 

studied the heat and mass transfer in chemically 

reacting radiative Casson fluid flow over a 

slandering/flat stretching sheet in a slip flow 

regime with an aligned magnetic field. Babu et 

al. [15] analyzed the two-dimensional MHD 

flow across a slandering stretching sheet within 

the sight of variable viscosity and viscous 

dissipation. Also, Reddy et al. [16] studied the 

effects of viscous dissipation and nonlinear 

thermal radiation on Casson fluid flow 

embedded with magnetic nanoparticles. 

Ramandevi et al. [17] investigated the MHD 

flow and heat transfer of two distinct non-

Newtonian fluids (Casson and viscoelastic) 

across a stretching sheet with the new heat flux 

theory namely Cattaneo-Christov. 

Kumar et al. [18] studied the heat transfer impact 

on MHD ferrofluid flow over a shrinking sheet 

and transmuted the governing equations into 

coupled nonlinear ODE's with the assist of 

suitable similarity transformations, then 

numerically solved by R.K. Fehlberg technique. 

Also, Kumar et al. [19] numerically investigated 

the MHD boundary layer flow which electrically 

conducting past a cone and a wedge with 

Cattaneo-Christov heat flux. At first, the 

governing equations of flow are converted into 

ODE via proper self-similarity transforms, and 

the resulted equations are solved numerically by 

using Runge Kutta and Newton’s methods. 

Kumar et al. [20] studied the thermal transport of 

magnetohydrodynamic non-Newtonian fluid 

flow over a melting sheet in the presence of 

exponential heat source. The group of partial 

differential equation (PDE) is mutated as 

dimension free with the assistance of similarity 

transformations, then the resulted highly 

nonlinear coupled equations are solved with the 

help of fourth-order Runge–Kutta based 

shooting technique.  

However, the research is limited for the non-

linear fluid flow due to the intricacy originated 

from both the geometry and nonlinearity of 

governing equations. On the other side, for a 

non-Newtonian fluid conforming the non-

isothermal model in Circular Couette flow, no 

analytical heat transfer study was found. The 

viscosity of non-isothermal Carreau fluid is 

considered simultaneously interdependent on 

temperature and shear rate. The investigation of 

thermal dissipation effects on the flow is the 

main motivation of the present work. As another 

novelty point, the perturbation method is applied 

to highly nonlinear governing equations and 

finding a handy third order approximation 

solution. The major aim of current work is to 

specify characteristics of entropy generation for 

non-Newtonian fluid conforming the non-

isothermal model while thermal dissipation term 

is considered in energy equation, and the entropy 

generation is investigated in Circular Couette 

flow. The governing equations are simplified in 

the narrowed gap limit, and the analytical 

expressions are presented for dimensionless 

temperature and entropy generation number in 

both isothermal and isoflux cases.  

 

2. Governing equations 

 

At first, the constitutive equations are presented, 

and the solution method is described. Suppose 

https://reader.elsevier.com/reader/sd/4372F96FAF2FA1B1D62421E42D4F4FC641F4E0FAF0A458627C3FECBD626DD21E3622707544B255FE45C5EB7591B8E394#pf6
https://reader.elsevier.com/reader/sd/4372F96FAF2FA1B1D62421E42D4F4FC641F4E0FAF0A458627C3FECBD626DD21E3622707544B255FE45C5EB7591B8E394#pf6
https://reader.elsevier.com/reader/sd/4372F96FAF2FA1B1D62421E42D4F4FC641F4E0FAF0A458627C3FECBD626DD21E3622707544B255FE45C5EB7591B8E394#pf6
https://reader.elsevier.com/reader/sd/4372F96FAF2FA1B1D62421E42D4F4FC641F4E0FAF0A458627C3FECBD626DD21E3622707544B255FE45C5EB7591B8E394#pf6
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there is an incompressible Non-Newtonian fluid 

between two concentric cylinders with inner and 

outer radii R1 and R2, respectively (Fig. 1).  

 

 
Fig. 1. Schematic of circular Couette flow; (a) 

isothermal case with the same wall temperature, (b) 

isothermal case with different wall temperature, (c) 

isoflux case with isolated outer cylinder, and (d) 

isoflux case with applied constant heat flux to the 

outer cylinder. 
 

The inner cylinder is rotated at a constant angular 

speed, Ω, and the outer one is fixed. The 

constitutive equations for an incompressible 

Non-Newtonian fluid are as follows [13]: 

 
𝜵. 𝑼 = 𝟎 (1) 

𝝆(𝑼,𝒕 + 𝑼. 𝜵𝑼) = −𝜵𝑷 + 𝜵. (𝝁𝜞̇) (2) 

𝜌𝐶𝑝(𝑇,𝑡 + 𝑈. ∇𝑇) = 𝑘𝑐𝛻2𝑇 + 𝛷 (3) 

 

where the comma symbol gives the partial 

differentiation meaning and all other parameters 

and variable defined in the Nomenclature 

section. Introducing dimensionless coordinates 

as follows: 

 

𝑟 =
𝑅 − 𝑅1

𝐷
 , 𝑧 =

𝑍

𝐷
, 𝜂 =

𝜇

𝜇0
, 

  𝑡̅ =
𝜈0

𝐷2
𝑡, 𝑝 =

𝐷2

𝜌𝜈0
2 𝑃, 𝛩 =

𝑇 − 𝑇0

∆𝑇0
,  

 𝛾̇ =
𝑅1𝛺

𝐷
𝛤̇, 𝑢𝑟 =

𝐷

𝜈0
𝑈𝑅 ,   

  𝑢𝜃 =
1

𝑅1𝛺
𝑈𝜃  ,  𝑢𝑧 =

𝐷

𝜈0
𝑈𝑍 ,   

(4) 

 

where ΔT0=1/  is a characteristic of temperature 

difference [13]. In the current work, the viscosity 

of the fluid is considered simultaneously 

interdependent on temperature and shear rate.  

The Nahme law [13] and Carreau Eq. (13) are 

used to model the dependence of viscosity on 

temperature and shear rate, respectively, as: 

 

𝜂(𝛾̇ , 𝛩) = 𝑒−𝛽Θ[1

+ 𝐷𝑒2𝐼𝐼2𝐷](𝑛−1) 2⁄  

(5) 

 

All parameters are defined in Nomenclature 

Section. The significant preference of the above 

model respect to other Non-Newtonian 

equations is recovered viscosity Newton’s law in 

the zero shear rates limit. 

In the current paper, it is supposed that Ta=O(1), 

due to the narrowed gap limit simplification. 

Therefore, this assumption, which leads to the 

terms of O(ε/Ta) in governing equations, can be 

neglected, and dimensionless governing 

equations are reduced as follows: 

 

𝑢𝑟,𝑟 + 𝑢𝑧,𝑧 = 0      (6a) 

𝑢𝑟,𝑡 + 𝑢𝑟𝑢𝑟,𝑟 + 𝑢𝑧𝑢𝑟,𝑧 −

𝑇𝑎 (𝑢𝜃)2 = −𝑃,𝑟 + 𝜂(𝑢𝑟,𝑟𝑟 +

𝑢𝑟,𝑧𝑧) + 2𝜂,𝑟𝑢𝑟,𝑟+𝜂,𝑧(𝑢𝑟,𝑧 + 𝑢𝑧,𝑟)  

     (6b) 

𝑢𝜃,𝑡 + 𝑢𝑟𝑢𝜃,𝑟 + 𝑢𝑧𝑢𝜃,𝑧 = − 𝑃,𝜃 +

𝜂(𝑢𝜃,𝑟𝑟 + 𝑢𝜃,𝑧𝑧) + 𝜂,𝑟𝑢𝜃,𝑟 + 𝜂,𝑧𝑢𝜃,𝑧  
     (6c) 

𝑢𝑧,𝑡 + 𝑢𝑟𝑢𝑧,𝑟 + 𝑢𝑧𝑢𝑧,𝑧 = − 𝑃,𝑧 +

𝜂(𝑢𝑧,𝑟𝑟 + 𝑢𝑧,𝑧𝑧) + 𝜂,𝑟(𝑢𝑧,𝑟 +

𝑢𝑟,𝑧) + 2𝜂,𝑧𝑢𝑧,𝑧  

     (6d) 

𝑃𝑒 (𝛩,𝑡 + 𝑢𝑟𝛩,𝑟 + 𝑢𝑧𝛩,𝑧) = (𝛩,𝑟𝑟 +

𝛩,𝑧𝑧) + 𝑁𝑎 (𝑢𝜃,𝑟)𝜂  
    (6e) 

 

In accordance with the principle of steady 

tangential annular flow [13], the base flow 

velocity and temperature functions for the steady 

state can be expressed as: 

 

𝑢𝑟 = 0 ,   𝑢𝜃 = 𝑓(𝑟),    𝑢𝑧 = 0 ,

𝛩 = 𝑔(𝑟) 
(7) 

 

The dimensionless governing equations after 

introducing the above simplifications (7) into 

(6), gives: 

 
𝑑𝑝

𝑑𝑟
= 𝑇𝑎 (𝑢𝜃)2 (8a) 
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𝑑

𝑑𝑟
(𝑒−𝛽Θ [1

+ 𝐷𝑒2 (
𝑑𝑢𝜃

𝑑𝑟
)

2

]

(𝑛−1) 2⁄
𝑑𝑢𝜃

𝑑𝑟
) = 0 

(8b) 

𝑑2𝛩

𝑑𝑟2

= −𝑁𝑎 𝑒−𝛽Θ [1

+ 𝐷𝑒2 (
𝑑𝑢𝜃

𝑑𝑟
)

2

]

(𝑛−1) 2⁄

(
𝑑𝑢𝜃

𝑑𝑟
)

2

 

(8c) 

 

Two common surface thermal conditions are 

used in the analysis of the current problem. Both 

specified temperature and specified heat flux for 

the outer cylinder are used with same 

hydrodynamic boundary conditions on the 

velocity field. 

 

3. Solution procedure 

 
First, simplifying the problem in which viscosity 

and the thermal conductivity are not varying 

with temperature. The problem can be written in 

dimensionless form as:  

 

𝑑

𝑑𝑟
([1 + 𝐷𝑒2 (

𝑑𝑢𝜃

𝑑𝑟
)

2

]

(𝑛−1) 2⁄
𝑑𝑢𝜃

𝑑𝑟
)

= 0 

(9a) 

𝑑2𝛩

𝑑𝑟2 = −𝐵𝑟 [1 +

𝐷𝑒2 (
𝑑𝑢𝜃

𝑑𝑟
)

2
]

(𝑛−1) 2⁄

(
𝑑𝑢𝜃

𝑑𝑟
)

2
  

(9b) 

 

which are subjected to the boundary conditions 

of: 

 

𝑎𝑡          𝑟 = 0     𝑢𝜃 = 1 ,      𝛩 = 0 (10a) 

𝑎𝑡          𝑟 = 1     𝑢𝜃 = 0 ,     𝛩 = 0 (10b) 

 

Eqs. (9(a) and (b)) through the conditions (10) 

are easily solved to give: 

 

𝑢𝜃 = 1 − 𝑟       
(11a) 

 

  𝛩 =
𝐵𝑟

2
[1 + 𝐷𝑒2](𝑛−1) 2⁄ (𝑟 − 𝑟2) (11b) 

 

The maximum temperature occurs at r=0.5, and 

is given by:  

 

𝛩𝑚𝑎𝑥 =
𝐵𝑟

8
[1 + 𝐷𝑒2](𝑛−1) 2⁄  (12) 

 

The simple result can be used for making rough 

estimates of the temperature rise that can be 

expected in the gap between two moving 

surfaces in the absence of an axial pressure 

gradient. The Eqs. (8(a-c)) are perturbed form of 

Eqs. (9(a) and (b)) which are become as: 

 

[1 + 𝐷𝑒2 (
𝑑𝑢𝜃

𝑑𝑟
)

2
]

(𝑛−1) 2⁄
𝑑𝑢𝜃

𝑑𝑟
=

𝑐𝑒𝛽Θ =  𝑐 (1 + 𝛽Θ +
1

2
𝛽2Θ2 +

1

6
𝛽3Θ3 + ⋯ ) = 𝐶  

 

(13a) 

𝑑2𝛩

𝑑𝑟2 = −𝑁𝑎 𝑒−𝛽Θ [1 +

𝐷𝑒2 (
𝑑𝑢𝜃

𝑑𝑟
)

2
]

(𝑛−1) 2⁄

(
𝑑𝑢𝜃

𝑑𝑟
)

2
  

(13b) 

 

where c is integration constant. Thus for small 

values of β, the aforementioned solution of 

velocity is expected to be accurate. This can be 

inserted into the energy equation (Eq. (13(b)), 

and it is also necessary to expand the integration 

constant in a similar series to give: 

 
𝑑2𝛩

𝑑𝑟2 = −𝛽 𝐵𝑟 𝐶 = −𝐵𝑟 (𝛽 𝐶0 +

𝛽2𝐶1 + ⋯ ) = −𝑁𝑎 (𝐶0 + 𝛽 𝐶1 +
𝛽2𝐶2 + ⋯ )  

(14) 

 

Eqs. (13(a) and (b)) are solved by a perturbation 

procedure, using the temperature sensitivity of 

the viscosity, β, as the perturbation parameter. 

This is considered a form of the expansion 

solution as follow:  

 

  𝛩 = Θ0(𝑟) + 𝛽 Θ1(𝑟) + 𝛽2Θ2(𝑟)
+ ⋯ 

(15) 

 

When this expansion is substituted into Eq. (14), 

sets of differential equations are obtained by 
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equating coefficients of equal powers of 

perturbation parameter. The resulting 

differential equations are solved with the related 

boundary conditions. The handy third order 

approximation solution to the steady tangential 

annular flow governed by Eq. (8) is obtained 

resulting in the velocity and temperature 

expressions in dimensionless form as: 

 

𝑢𝜃 = 1 − 𝑟 (16) 

𝛩𝑇1 =
𝑁𝑎 𝐶0

2
(𝑟 − 𝑟2) −

𝑁𝑎2𝐶0
2𝛽

24
(𝑟 − 2𝑟3 + 𝑟4)  

 

(17a) 

𝛩𝑇2 = 𝑏 𝑟 −
𝑁𝑎 𝐶0

2
(𝑟 − 𝑟2) +

𝑁𝑎 𝐶0𝛽2

6
(𝑟3 − 𝑟) −

𝑁𝑎 𝐶0𝛽4

24
(𝑟4 −

𝑟) −
𝑁𝑎2𝐶0

2𝛽

24
(𝑟 − 2𝑟3 + 𝑟4)  

(17b) 

𝛩𝑞1 =
𝑁𝑎 𝐶0

2
(2𝑟 − 𝑟2) −

𝑁𝑎2𝐶0
2𝛽

24
(8𝑟 − 4𝑟3 + 𝑟4)  

 

(17c) 

𝛩𝑞2 = 𝑟 +
𝑁𝑎 𝐶0

2
(2𝑟 − 𝑟2) +

𝑁𝑎 𝐶0𝛽

6
(𝑟3 − 3𝑟) −

𝑁𝑎 𝐶0𝛽2

24
(𝑟4 −

4𝑟) −
𝑁𝑎2𝐶0

2𝛽

24
(8𝑟 − 4𝑟3 + 𝑟4)  

 

(17d) 

 

Here C0 is equal to [1 + 𝐷𝑒2]
𝑛−1

2 .  Eq. (17(a)), 

assigned as ΘT1 which is the dimensionless 

temperature for the isothermal case with the 

same thermal boundary conditions, Θ=0 at the 

inner cylinder and outer cylinder. Eq. (17(b)), 

assigned as ΘT2 which is the dimensionless 

temperature for the isothermal case with 

different thermal boundary conditions, Θ=0 at 

the inner cylinder and Θ=β at the outer cylinder.  

Eq. (17(c)), assigned as Θq1 which is the 

dimensionless temperature for the isoflux case 

with thermal boundary conditions, Θ=0 at the 

inner cylinder and Θ'=0 at the outer cylinder (the 

temperature at the inner cylinder is specified as 

isothermal case but the heat flux at the outer 

cylinder is specified as zero value).  Eq. (17(d)), 

assigned as Θq2 which is the dimensionless 

temperature for the isoflux case with thermal 

boundary conditions, Θ=0 at the inner cylinder 

and Θ'=β at the outer cylinder (the temperature 

at the inner cylinder is specified as isothermal 

case but the heat flux at the outer cylinder is 

specified as non-zero value). 

Definition of dimensional local entropy 

generation rate, Sgen (W m-3K-1), is expressed as 

[21]: 

 

𝑆𝑔𝑒𝑛 =
𝑘𝑐

𝑇0

(∇𝑇)2 +
Φ

𝑇0
  

(18) 

 

The dimensional local volumetric entropy 

generation rate, Sgen, for the steady tangential 

annular flow in cylindrical coordinates is 

expressed as: 

 

𝑆𝑔𝑒𝑛 =
𝑘𝑐

𝑇0
(

𝑑𝑇

𝑑𝑅
)

2

+
𝜏𝑅𝜃

𝑇0
𝑅

𝑑

𝑑𝑅
(

𝑈𝜃

𝑅
) 

(19) 

 

Eq. (19) indicates two different sources of heat 

transfer contributed to entropy generation. The 

first term expresses the heat transfer entropy 

generation and the second one expresses the 

friction dissipation entropy generation. The 

dimensional entropy generation rate Sgen, can be 

written in dimensionless form as: 

 

𝑁 = (
𝑑𝛩

𝑑𝑟
)

2

+ 𝐵𝑟 [1 +

𝐷𝑒2 (
𝑑𝑢𝜃

𝑑𝑟
)

2

]
(𝑛−1) 2⁄

(
𝑑𝑢𝜃

𝑑𝑟
)

2

  

(20) 

 

Finally, the dimensional form is achieved by 

substituting Eq. (9(b)) into Eq. (20): 

 

𝑁 = (
𝑑𝛩

𝑑𝑟
)

2

−
𝑑2𝛩

𝑑𝑟2
 

(21) 

 

Against dimensional form, Eq. (21) indicates 

two different sources of heat transfer contributed 

to entropy generation with opposite tendencies. 

The first term of this equation specifies NSRHT, 

which is the entropy generation due to radial heat 

transfer, whereas the second term specifies 

NSDISS, which is the entropy generation due to 

friction dissipation. The entropy generation 

number (N) is achieved by substituting Eq. (17) 

into Eq. (21). For a sample, the dimensional form 

of the entropy generation number is achieved by 

substituting Eq. (17(a)) into Eq. (21), as: 
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𝑁𝑇1 =
𝑁𝑎 𝐶0

576
(576 +

288 𝑁𝑎 𝐶0𝛽(𝑟2 − 𝑟)) +
𝑁𝑎2𝐶0

2

576
(−12 + 24𝑟 + 𝑁𝑎 𝐶0𝛽(1 −

6𝑟2 + 4𝑟3))
2
  

(22) 

 

Eq. (22), specified as NT1, expresses the entropy 

generation in the isothermal case with same 

thermal boundary conditions (the temperature at 

the inner and outer cylinder is specified as zero 

value).   

In the current problem, both fluid frictions and 

radial heat transfer with opposite tendencies 

contribute to entropy generation. The volumetric 

entropy generation rate of the fluid is evaluated 

by Eq. (19). However, this equation does not 

specify a clear entropy generation source, i.e. the 

entropy generation, due to radial heat transfer, or 

entropy generation, due to fluid friction 

dominates. The ratio of irreversibility 

distribution (Φirr) is defined as the relationship 

of entropy generation, due to friction dissipation 

(NSDISS), to entropy generation, due to heat 

transfer (NSRHT) [21]. Therefore, in special case 

with Φirr=1, both entropy generation, due to 

friction dissipation, and entropy generation, due 

to heat transfer equally contribute to total 

entropy generation, and for 0≤Φirr<1, the 

entropy generation, due to heat transfer, 

dominates and when Φirr>1, the entropy 

generation, due to fluid friction, dominates. The 

contribution of heat transfer entropy generation 

(NSRHT) to the overall entropy generation rate 

(NS) is required to optimize and engineering 

design of several industrial applications 

problems. Hence, the ratio of heat transfer 

entropy generation to the total entropy 

generation is defined as an alternative parameter 

for irreversibility distribution in dimensionless 

form as [21]:   

 

SRHT

SRHT SDISS irr

N
Be

N N







 
(23) 

 

This parameter is called Bejan number which 

represented whether the entropy generation due 

to fluid friction or entropy generation due to heat 

transfer is dominated. Therefore, in the case of 

Be=1, it corresponds to the special case at which 

the overall entropy generation is due to heat 

transfer only. While in the case of Be=0, it 

corresponds to the special case at which the 

overall entropy generation is due to friction 

dissipation only.  

In the current work, evaluation is performed for 

a typical Carreau fluid with λ=0.0173 and 

n=0.538 [13]. 

 

4. Results and discussion 

 

In this work, the perturbation method  is applied 

to highly nonlinear governing equations to find 

an approximate solution. The third-order 

approximation is considered utilizing four terms 

in nonlinear part series expansion. The 

comparisons between the numerical solution 

with approximations are shown in Figs. 2 and 3. 

The maximum absolute error shown in the 

figures is about 3.5E-7 at r=0.5. These 

comparisons prove the proficiency of the 

perturbation method. 

The temperature profiles are depicted in Fig. 2 

using different Brinkman number values for the 

isothermal boundary condition case while both 

walls are kept at the same specified temperature 

(T0). The profile  displays a maximum value 

within interval space between the vinner and 

outer cylinders. The temperature monotonically 

increases as the Brinkman number enhances due 

to thermal dissipation which increases with 

enhancing the shear rate. This exhibits the reality 

that the thermal dissipation magnitude in Eq. 

(6(c)) enhances with increasing Brinkman 

number.  

The influence of Deborah number on 

temperature plot is depicted in Fig. 3, for the 

isothermal boundary condition case while both 

walls are kept at the same specified temperature 

(T0). It shows the maximum temperature value 

declines within interval space between the inner 

and outer cylinders with raising the Deborah 

number. 

This fluid behavior results from the elasticity 

effect of non-Newtonian fluid, where the fluid 

viscosity declines with raising elasticity of fluid. 

The viscosity becomes correspondingly lower so 

that the solution above the center of the interval 

space, between the inner and outer cylinders, is 

dragged along with the inner cylinder.  
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Fig. 2. Approximate solution and RK4 numerical 

solution (a) and absolute error (b) of temperature 

profile for fluid with n=0.538, =0.1, De=0.5 for 

various Brinkman numbers. 

 

The influence of characteristic parameters such 

as Deborah number and Brinkman number on 

total entropy generation is depicted for the 

isothermal case in Figs. 4 and 5, respectively.   

The entropy generation decays in the radial 

direction from the rotating inner cylinder to the 

stationary outer cylinder as shown in Fig. 4. It 

depicts mentioned trend decreases with 

increasing the Deborah number as the elasticity 

parameter of the fluid. 

As can be seen from Fig. 5, the Brinkman 

number influence on total entropy generation 

profile is depicted which shows the total entropy 

generation plot climbs with Brinkman Number 

increasing.  Although, the overall entropy 

generation number is slightly greater for the 

domain of flow in adjacent of the inner cylinder 

than that the outer cylinder. The cause of this is 

very clear; Brinkman number acts as a heat 

source and  its increasing causes heat generation 

within the moving fluid layers. 

Therefore, Brinkman number must be controlled 

to minimize total entropy generation.  The 

influence of characteristic parameters such as 

Deborah number and Brinkman number on total 

entropy generation is depicted for Isoflux in 

Figs. 6 and 7, respectively. The entropy 

generation decays in the radial direction from the 

rotating inner cylinder to the stationary outer 

cylinder as is shown in Fig. 6. This efficacy is 

much more pronounced in Isoflux boundary 

conditions than that for the isothermal case. This 

behavior of overall entropy generation number 

results from the influence of Non-Newtonian 

fluid elasticity where the fluid viscosity declines 

with raising elasticity of fluid. Keunings and 

Crochet [22] reported the viscosity dependency 

and the effect of Non-Newtonian fluid elasticity. 

Also, Pinho and Oliveira [23] investigated this 

discussion in greater detail. As can be seen from 

Fig. 7, a similar expression can be presented for 

the overall entropy generation trend in the radial 

direction from the rotating inner cylinder to the 

stationary outer cylinder, although the influence 

of Brinkman number is apposite of the elasticity 

effect.  
 

 

 
Fig. 3. Approximate solution and RK4 numerical 

solution (a) and absolute error (b) of temperature 

profile for fluid with n=0.538, =0.1, Br=5 for 

various Deborah numbers. 

 
Fig. 4. Deborah number influence on overall 

entropy generation plot for fluid with n=0.538, 

=0.1 and Br=1 (isothermal case).  



JCARME                                        Entropy generation analysis . . .                                       Vol. 9, No. 1 

137 

 

 

 
Fig. 5. Influence of Brinkman number on overall 

entropy generation plot for fluid with n=0.538, 

=0.1 and De=0.1 (isothermal case). 

 

 
Fig. 6. Deborah number influence on overall 

entropy generation plot for fluid with n=0.538, 

=0.1 and Br=1 (isoflux case).  

 

Also, the influence of characteristic parameters 

such as Deborah number and Brinkman number 

on Bejan number for the isothermal case are 

shown in Figs. 8 and 9, respectively. The Bejan 

number range is close to zero, as depicted in 

Figs. 8 and 9, representing the entropy 

generation due to fluid friction is dominated, and 

the entropy generation due to heat transfer is 

little contributed to the total entropy generation. 

In other words, the major irreversibilities result 

from viscous dissipation effects. As shown in 

these figures, a variation of Deborah number 

uniformly affectes the overall domain of flow, 

but variation of Brinkmann number much more 

affects the flow adjacent of boundary conditions 

(the inner and outer cylinders), where the 

viscous dissipation effects are much more 

pronounced than other domain of flow. 

Recalling the friction entropy generation of fluid 

is the dominated mechanism in overall entropy 

generation. 

 

 
Fig. 7. Brinkman number influence on overall 

entropy generation plot for fluid with n=0.538, 

=0.1 and De=0.1 (isoflux case). 

 

 
Fig. 8. Deborah number influence on Bejan 

number plot for fluid with n=0.538, =0.1 and 

Br=1 (isothermal case).  

 

 
Fig. 9. Brinkman number influence on Bejan 

number plot for fluid with n=0.538, =0.1 and 

De=0.1 (isothermal case). 

 

Next, the influence of characteristic parameters 

such as Deborah number and Brinkman number 

on  the Bejan number for Isoflux case are shown 

in Figs. 10 and 11, respectively. A similar trend 

can be presented for Bejan number plot in the 

radial direction from the rotating inner cylinder 

to the stationary outer cylinder (as is shown in 

Figs. 10 and 11, respectively). Although for 

Isoflux case, the Bejan number range is close to 

one, which represents the entropy generation due 

to heat transfer is dominated, and the entropy 



JCARME                                                    Abbas Kosarineia                                                  Vol. 9, No. 1  

 

138 

 

generation due to fluid friction is little 

contributed to the total entropy generation; in 

other words, the major irreversibilities result 

from the forced convection heat transfer.  

 

 
Fig. 10. Deborah number influence on Bejan 

number profile for fluid with n=0.538, =0.1 and 

Br=1 (isoflux case).  

 

 
Fig. 11. Brinkman number on Bejan number 

profile in isoflux case for polystyrene solution with 

n=0.538, =0.1 and De=0.1. 

 

5. Conclusions 

 

The entropy generation analysis is investigated 

for non-Newtonian fluid flow between 

concentric cylinders when the inner cylinder is 

rotating at a specified angular speed, and the 

outer cylinder is fixed. The non-Newtonian fluid 

viscosity is considered at the same time, 

dependent on temperature and shear rate. The 

perturbation method is presented to construct 

analytical approximation expressions for 

entropy generation number in the rapidly 

convergent series form. The technique success of 

this problem can be considered as a feasibility to 

use in other non-linear cases, instead of using 

other difficult and sophisticated techniques. It is 

concluded that the proposed technique is highly 

accurate. The influences of the Brinkman 

number, as the frictional dissipation parameter of 

the flow, and the Deborah number, as the 

elasticity parameter of the fluid, are investigated 

on the overall entropy generation analysis and 

Bejan number. The overall entropy generation 

number decays in the radial direction from the 

rotating inner cylinder to the stationary outer 

cylinder. The results show that overall entropy 

generation rate increases within flow domain as 

Brinkman number rises. It, however, declines 

with increasing Deborah number. The reason for 

this is very clear, the pseudoplastic fluid between 

concentric cylinders is heated as Brinkman 

number increases, due to frictional dissipation, 

and it is cooled, as Deborah number increases 

which is due to the elasticity behavior of the 

fluid. For isothermal case, the results show that 

the entropy generation due to fluid friction is 

dominated, and the entropy generation due to 

heat transfer is little contributed to the total 

entropy generation; in other words, the major 

irreversibilities result from the viscous 

dissipation effects. Although for Isoflux case, 

the Bejan number range is close to one, which 

represent the entropy generation due to heat 

transfer is dominated, and the entropy generation 

due to fluid friction is little contributed to the 

total entropy generation; in other words, the 

major irreversibilities results from the forced 

convection heat transfer. Therefore, Deborah 

number and Brinkman number must be 

controlled to minimize total entropy generation.  
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