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ABSTRACT

This paper is concerned with an investigation into the localized instability of a thin elastic orthotropic semi-
infinite plate. In this study, a semi-infinite plate, ssmply supported on two edges and under different boundary
conditions of clamped, hinged, sliding contact and free on the other edge, is studied. A mathematical model is
used and a general solution is presented. The conditions under which localized solutions exist are investigated.
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INTRODUCTION

The existence of edge waves aong the free edge of a homogeneous and isotropic semi-infinite thin
plate, modeled using Kirchhoff theory, was first noted by Konenkov [1]. Konenkov established that,
for isotropic plates, precisely one edge wave solution exists for al values of the two free parameters,
namely the bending stiffness and Poisson’s ratio. The edge wave speed is found to be proportional to
and dightly less than the speed of flexura (one-dimensional) waves on a plate of infinite extent.
Ambartsumian and Belubekyan [2] considered |ocalized bending waves along the edge of a plate using
several non-classical plate theories, concluding that Timoshenko-Mindlin plates do not admit
localized edge waves. One of the latest devel opmentsin the field has been the localized bending waves
in an eagtic orthotropic plate, by Mkrtchyan [3].

The andogy between locaized vibrations of plates and plate localized instability was established in
[4]. Further investigations on the late localized instability problems were aso carried out, [5]-[7]. In
the present paper, a mathematica model and differentia equations are presented, the solutions are
found; correspondingly, the necessary and sufficient different conditions for the existence of localized
solutions are also investigated. The limiting cases are obtained and finally the results and conclusions
arereported.
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MATHEMATICAL MODELING

A semi-infinite plate with two simply supported edges as illustrated in Fig. (1). is considered. The
width of the plate is b and the thickness is 2h. The Cartesian coordinate system (X, v, 2) is chosen so
that the plane (xay) is coincident with the plate middle surface, while z is the coordinate along the
thickness; the x axes and y are aligned in edges. The plate in Cartesian coordinates is to be defined by
the following domain:

0<x<w ,0<y<b ,~h<z<h

The plate is uniformly compressed along the edges y=0 and y =b with a constant load P. The
stability equation for plate middle plane normal displacement W( X,Yy) can be expressed as[8], [9]:
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Fig. 1. Uniformly compressed semi-infinite plate smply supported a ong the edges y=0 and y=b.

whereD,,, D,,are the bending stiffness in the x, y direction respectively. Further D,;,D,,, D,,and
D¢, can be written as:

h® E 1%

w=r5—— Dp=-2Dy,
121-v,v, Vi,
h3

Dy, =vi,Dy, Dgs = 1 Gy
and
vaE =vip By
Here, the subscripts 1 and 2 refer to the x and y directions, respectively, so E; isthe Young modulus
in the x direction, G,, is the shear modulus in the x-y plane, and v,, is the Poisson ratio for transverse

grain in the'y direction caused by stressin the x direction, with similar definition for E, and v, .
The boundary conditions on the ssimply supported edges at y=0, y=b are:

w=0
62W_0 y=0, y=b @)
oy
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Different boundary conditions will be considered for the edge x= 0. One additiona boundary
condition is needed. If the plate is semi-infinite, the localization condition prescribes attenuation
asX — oo, hence an additional congtraint is.

lim w=0

©)
X—> 0
Genera solution of EQ. (1) can be represented as series expansion:
w=>" f (x)sindy, where 3 =nz/b 4

n=1

Eqg. (4) andEq. (1) yied to the following linear ordinary differential equation and the
function f_( x) can be determined by solving the ordinary differential equation:

£V =20, 22" + a2t (1-n?)f, =0 5)
D,, + 2D D
where al=—12+ %, a,=—2, nﬁ:—Pz (6)
Dll Dll DZZA’H

The attenuation condition of Eq.(3) implies that f (X)—> 0 asx— 0. Therefore, the genera
solution of Eq. (5) isin theform:

f =Ae ™ B e P @

where p,and p,are given by:

P, = \/al x \/a‘l2 —Q, (1_ 77n2) (8

Refering to Eq. (6) it is clear that:

o, >0, a,>0 9)
and:
al—\/a12—a2(1—77n2)>0 if 0<p’<1 (10)

The constants A, and B, can be obtained imposing the different boundary conditions at edge X =0
leading to alinear homogeneous system in A, and B,,. The nontrivial solution is given by posing the
determinant of the matrix of the coefficients to zero. That yields the equationinz,,.

The different boundary conditions at edge X = Ocan be presented asfollows:

A. Clamped Edge
The boundary conditions on the clamped edgeat X =0 are:
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w=0, a—W=0 at x=0
OX

Substitution of Eq. (4) into above boundary conditionsyields:

f =0, o at x=0 (11)
dx

Substitution of Eq. (7) into Eq. (11), results in a set of simultaneous equations with regard to
A, and B,, which are obtained as:

A +B, =0

=p,—p, =0
_plph_szn:O} 2 '

Substitution of Eqg. (8) into the above equation results in the following equation:

2

ni=1+4 51 (12)
a,

Localized solution doesn't exist, because Eq. (12) doesn't satisfy condition (10).

B. Hinged Edge
The boundary conditions on the hinged edgeat x=0 are:
2
w=0, “%¥_0 a x=0
OX

Substitution of Eg. (4) into the above boundary conditionsyields:

d*f
f, =0, —+~=0 at x=0 13
o (13)
By substituting Eq. (7) into Eq. (13), a set of simultaneous equations with regard to A andB,, is

obtained as follows:
A +B,=0
2 2 = pz2 - p12 =0 (19
- P An - P Bn =0
By substituting Eqg. (8) into the above equation the following equation is obtai ned:
2

ni=1+4 51 (15)
a,

All localized solution doesn't exist, because Eq. (15) doesn't satisfy condition (10).

C. Sliding Contact
The boundary conditions on the sliding contact edgeat X =0 arel
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oW 0 0w

=0 o5=0  at x=0
X X

Substitution of Eq. (4) into above boundary conditionsyields:

L=0, —F=0 at x=0 (16)
X X

Substitution of Eq. (7) into Eq. (16), result in a set of simultaneous equations with regard to A, and B,
which are obtained as:

p1A1 + szn =0 2 2
= - =0 17
p13A1 n p23Bn _ 0 pl pz( p2 pl ) ( )

There are two cases:
1.C. p,S-p°=0

By substituting Eqg. (8) into the above equation the following equation is obtained:

2
ni=1+4 51 (18)
«,
All localized solution doesn't exist, because Eq. (18) doesn't satisfy condition (10).
2.C. p,p, =0

Limiting case (no localization):
p,p, =0= p2:0:>77n2:1 , PL=42 (19
From Eq. (17) and the above equations, A, =0.

Substituting A, = 0 into (7) the following equation is obtained:
f, =B,

By substation of the above equation into Eq. (4), the following equation is obtained:

w=>'B siniy (20)
n=1

The equation Eq. (20) isalost of stability by cylindrical surface.
From nnz =1, theminimum of Pis obtained asfollows:
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2
7D

pn )min = b2 = (21)
D. FreeEdge
The boundary conditions at the freeedge X =0 are:

2 2
Ml_ (Dlla \;v"'Dlzai\;V):O

X oy (22)

2 2
N, = N1+258';:_§{Dugvj+<om +4D,, )Zy‘f’}:o
X X

where M, arises from distribution of in-plane normal stress o, and the twisting moment H and shear

forces per unit length, N, arises from the shear stress in the plate and Nl is reaction force aong the
edge x=0.

Substitution of Eq. (4) into boundary conditions (22) yields:

d2f,

—2—a3/1n2fn :0
dd:(f y at x=0 (23)
; 2 —(ay+2a,)4,°—=">=0

X

Some new notations are introduced as follows;

D 2D
a,=—2 ,a,=—2L>a=a,+a, (24)
Dll Dll
where «, ,a,,a, arethreeindependent constants.

By using Eq. (6), Eq. (24) and substitution of Eq. (7) into Eq. (23), a set of simultaneous equations
with regard to A, and B, are obtained asfollows:

2 2 _
( P, _2a3 )An +( P, —a; )Bn _20 } (25)
PP, —ay—2a,)A, + p,(p,” —a;—2a,)B, =0

The condition that the determinant A = 0 yields the characteristic equation as follows:

A= pz( pl2 —063)( p22 — a3 —20!4)— pl( p22 —063)( p12 — 03 —20{4)=O (26)
Instead of Eq. (26) it is possible to write:

(P, =P )M(77)=0 27
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where
M(17)= P P; + 20, PP, —as( Py + P2 )+ az( s + 2a,)
Using the following eguations:
2 2
Pr+P =20, , y=a5+a,
Eq. (28) can be written as:
M(77)=p;p; +20,P,P, — a5

From Eq. (27) there are two cases asfollows:

1.D. p,—p, =0

By the substitution of Eq. (8) into the above equation the following equation is obtai ned:

2
a
ni=1+-2>1
@,

Localized solution doesn't exist, because Eq. (31) doesn't satisfy condition (10).
2.D. M(n)=0

Inthefirst limitingcase 7, ->1= p, = \/27051, p,=0

From Eq. (30) the following equation is obtained:

M(1)=-aZ <0

In the second limiting case 7, > 0= p,p, = \/a_z

From Eq. (30) the following equation is obtained:

M(0)=a, +2a, a, —a’

2
a,+20,, o, —a; >0

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Condition (35) is sufficient for the existence of the real root of Eq. (32) in the following interval:

O<n,<1

From Eqg. (30) and Eq. (34) the following equation is obtained:

2 2
PP, =—a, TAa; +a;

(36)
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From Eq. (8) the following equation is obtained:

P. Py :\/az(l_ﬂf) (37

From Eq. (36) and Eq. (37) the following equation is obtained:

n2 =1-a,"(2a? +al +2a,\Jal +a?) (38)

When condition (35) is hot satisfied, thereis no root or there are two roots.
For more perspective, two types of orthotropic materials are considered. Using Eqg. (38) and obtaining

a,,a,, a, a,, the values of nare provided. Then M(7) which is monotonous in the interval
0< 7 <1 for each materia isplotted in Fig. (2) and Fig. (3).

1. Plywood

E,, =1.2x10° kg/cm? a, =0.18737
E,, =0.6x10° kg/cm? a, =0.50704
G,, =0.07x10° kg/cm? a, =0.071
v, =0071 a, =0.11637
v,, =0.036

7, = +0.93492
75,4 = £0.99961

M(n)

() EE R S T N S S S N

Fig. 2. M(n) versusthe 7 of the Plywood material.
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2. Carbon/Epoxy Unidirectional Prepreg T300/5208

E,, =181 GPa=18.46x10° kg/cm’ o, =0.35885
E,, =10.3 GPa=1.05x10° kg/cm’ a, =0.05689
G, =7.17 GPa=0.731x10° kg/cm? a, =028

v, =0.28 o, =0.07884
v, =0.01593

M, = +(7.2524x107 +i1.1846)
744 = +0.45792

Mix)

Fig. 3. M(77) versusthe 7 of the Carbon/Epoxy T300/5208 material.

CONCLUSIONS

In this paper, localized ingtability of a thin elastic orthotropic semi-infinite plate has been analyzed.
Severd conclusions can be summarized as follows:

-In clamped edge conditions localized solution doesn't exist.

-In hinged edge conditions localized solution doesn't exist.

-In diding contact conditions there are two cases, in one case localized solution doesn't exist and in the
other case the equation of loss of stability by cylindrical surface is obtained.

-In free edge there are two cases, in one case localized solution doesn't exist and in the other case real
roots are obtained.
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