
JCARME Vol.1, No. 1, Sept. 2011

59

EFFECT OF BOUNDARY CONDITIONS ON LOCALIZED
INSTABILITY OF THE SEMI-INFINITE ORTHOTROPIC PLATE

Reza Sharifian*

Department of Mechanical Engineering, Hadid Arak Training Center of Applied Science and
Technology affiliated with the University of Applied Science and Technology, Arak, Iran

Vagharshak Belubekyan
Department of Mechanics, Yerevan State University, Yerevan, Armenia

Received: 3/7/2011 Accepted: 29/8/2011 Online: 11/9/2011

ABSTRACT
This paper is concerned with an investigation into the localized instability of a thin elastic orthotropic semi-
infinite plate. In this study, a semi-infinite plate, simply supported on two edges and under different boundary
conditions of clamped, hinged, sliding contact and free on the other edge, is studied. A mathematical model is
used and a general solution is presented. The conditions under which localized solutions exist are investigated.
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INTRODUCTION
The existence of edge waves along the free edge of a homogeneous and isotropic semi-infinite thin
plate, modeled using Kirchhoff theory, was first noted by Konenkov [1]. Konenkov established that,
for isotropic plates, precisely one edge wave solution exists for all values of the two free parameters,
namely the bending stiffness and Poisson’s ratio. The edge wave speed is found to be proportional to
and slightly less than the speed of flexural (one-dimensional) waves on a plate of infinite extent.
Ambartsumian and Belubekyan [2] considered localized bending waves along the edge of a plate using
several non-classical plate theories, concluding that Timoshenko–Mindlin plates do not admit
localized edge waves. One of the latest developments in the field has been the localized bending waves
in an elastic orthotropic plate, by Mkrtchyan [3].
The analogy between localized vibrations of plates and plate localized instability was established in
[4]. Further investigations on the late localized instability problems were also carried out, [5]-[7]. In
the present paper, a mathematical model and differential equations are presented, the solutions are
found; correspondingly, the necessary and sufficient different conditions for the existence of localized
solutions are also investigated. The limiting cases are obtained and finally the results and conclusions
are reported.
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MATHEMATICAL MODELING
A semi-infinite plate with two simply supported edges as illustrated in Fig. (1). is considered. The
width of the plate is b and the thickness is 2h. The Cartesian coordinate system (x, y, z) is chosen so
that the plane (xoy) is coincident with the plate middle surface, while z is the coordinate along the
thickness; the x axes and y are aligned in edges. The plate in Cartesian coordinates is to be defined by
the following domain:

The plate is uniformly compressed along the edges 0y and by  with a constant load P. The

stability equation for plate middle plane normal displacement )y,x(w can be expressed as [8], [9]:
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Fig. 1. Uniformly compressed semi-infinite plate simply supported along the edges y=0 and y=b.

where 11D , 22D are the bending stiffness in the x, y direction respectively. Further 11D , 22D , 12D and

66D can be written as:
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Here, the subscripts 1 and 2 refer to the x and y directions, respectively, so 1E is the Young modulus

in the x direction, 12G is the shear modulus in the x-y plane, and 12 is the Poisson ratio for transverse

strain in the y direction caused by stress in the x direction, with similar definition for 2E and 21 .
The boundary conditions on the simply supported edges at y=0, y=b are:
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Different boundary conditions will be considered for the edge x= 0. One additional boundary
condition is needed. If the plate is semi-infinite, the localization condition prescribes attenuation
as x , hence an additional constraint is:




x

wlim 0
(3)

General solution of Eq. (1) can be represented as series expansion:
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Eq. (4) and Eq. (1) yield to the following linear ordinary differential equation and the
function )x(f n can be determined by solving the ordinary differential equation:
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The attenuation condition of Eq.(3) implies that 0)x(f n as 0x . Therefore, the general

solution of Eq. (5) is in the form:
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where 1p and 2p are given by:
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Refering to Eq. (6) it is clear that:
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and:
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The constants nA and nB can be obtained imposing the different boundary conditions at edge 0x

leading to a linear homogeneous system in nA and nB . The nontrivial solution is given by posing the

determinant of the matrix of the coefficients to zero. That yields the equation in n .

The different boundary conditions at edge 0x can be presented as follows:

A. Clamped Edge
The boundary conditions on the clamped edge at 0x are:
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Substitution of Eq. (4) into above boundary conditions yields:
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Substitution of Eq. (7) into Eq. (11), results in a set of simultaneous equations with regard to

nA and nB which are obtained as:
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Substitution of Eq. (8) into the above equation results in the following equation:
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Localized solution doesn't exist, because Eq. (12) doesn't satisfy condition (10).

B. Hinged Edge
The boundary conditions on the hinged edge at 0x are:
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Substitution of Eq. (4) into the above boundary conditions yields:
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By substituting Eq. (7) into Eq. (13), a set of simultaneous equations with regard to nA and nB is

obtained as follows:
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By substituting Eq. (8) into the above equation the following equation is obtained:
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All localized solution doesn't exist, because Eq. (15) doesn't satisfy condition (10).

C. Sliding Contact
The boundary conditions on the sliding contact edge at 0x are:
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Substitution of Eq. (4) into above boundary conditions yields:
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Substitution of Eq. (7) into Eq. (16), result in a set of simultaneous equations with regard to nA and nB
which are obtained as:
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There are two cases:
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By substituting Eq. (8) into the above equation the following equation is obtained:
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All localized solution doesn't exist, because Eq. (18) doesn't satisfy condition (10).

2. C. 021 pp

Limiting case (no localization):
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From Eq. (17) and the above equations, 0nA .

Substituting 0nA into (7) the following equation is obtained:
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By substation of the above equation into Eq. (4), the following equation is obtained:
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The equation Eq. (20) is a lost of stability by cylindrical surface.

From 12 n , the minimum of P is obtained as follows:
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D. Free Edge
The boundary conditions at the free edge 0x are:
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where 1M arises from distribution of in-plane normal stress x and the twisting moment H and shear

forces per unit length, 1N arises from the shear stress in the plate and 1N
~

is reaction force along the

edge 0x .

Substitution of Eq. (4) into boundary conditions (22) yields:
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Some new notations are introduced as follows:
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where 432  ,, are three independent constants.

By using Eq. (6), Eq. (24) and substitution of Eq. (7) into Eq. (23), a set of simultaneous equations
with regard to nA and nB are obtained as follows:
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The condition that the determinant 0 yields the characteristic equation as follows:
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Instead of Eq. (26) it is possible to write:
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where
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Eq. (28) can be written as:
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From Eq. (27) there are two cases as follows:
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Localized solution doesn't exist, because Eq. (31) doesn't satisfy condition (10).
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Condition (35) is sufficient for the existence of the real root of   Eq. (32) in the following interval:
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From Eq. (30) and Eq. (34) the following equation is obtained:
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From Eq. (8) the following equation is obtained:
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From Eq. (36) and Eq. (37) the following equation is obtained:

)(n
2
3

2
44

2
3

2
4

1
2

2 221    (38)

When condition (35) is not satisfied, there is no root or there are two roots.
For more perspective, two types' of orthotropic materials are considered. Using Eq. (38) and obtaining

1 , 2 , 3 , 4 , the values of  are provided. Then )(M  which is monotonous in the interval

10  for each material is plotted in Fig. (2) and Fig. (3).

1. Plywood
25
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25

22 1060 cm/kgx.E  5070402 .
25

12 10070 cm/kgx.G  07103 .
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Fig. 2. )(M  versus the  of the Plywood material.
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2. Carbon/Epoxy Unidirectional Prepreg T300/5208
25

11 /1046.18181 cmkgxGPaE  3588501 .
25

22 /1005.13.10 cmkgxGPaE  0568902 .
25

12 /10731.017.7 cmkgxGPaG  2803 .
28012 . 0788404 .
01593021 .

).ix.(, 184611025247 17
21  

45792043 ., 

Fig. 3. )(M  versus the  of the Carbon/Epoxy T300/5208 material.

CONCLUSIONS
In this paper, localized instability of a thin elastic orthotropic semi-infinite plate has been analyzed.
Several conclusions can be summarized as follows:
-In clamped edge conditions localized solution doesn't exist.
-In hinged edge conditions localized solution doesn't exist.
-In sliding contact conditions there are two cases, in one case localized solution doesn't exist and in the
other case the equation of loss of stability by cylindrical surface is obtained.
-In free edge there are two cases, in one case localized solution doesn't exist and in the other case real
roots are obtained.
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