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Nomenclature 
𝑎 and b Constants  

  𝑎0,.𝑎7 Constants 

𝐴𝑛 Adomian polynomials 

𝐶 Volumetric fraction of  

nanoparticles 

𝐷𝑏 Brownian diffusion coefficient 

𝐷𝑛 Diffusivity of microorganisms 

𝐷𝑇  Thermo-phoretic diffusion 

coefficient 

𝜓 Stream function  

𝐹 Dimensionless velocity 

𝜃 Dimensionless temperature 

Greek symbols 

𝜂 Non-dimensional angle 

𝛼 Thermal  diffusivity 

𝜁 Vorticity function 

𝛾 Constant 

𝛿𝜃,𝛿,𝛿,𝛿𝑠 Constants 

𝜌𝑓 Fluid density  

𝜌𝑠 Solid nanoparticles density  

𝜙 Dimensionless nanoparticle 

volume fraction 
𝑆 Dimensionless density of motile 

microorganisms 
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𝑃 Pressure 
𝑁 density of motile 

microorganisms 
𝑁𝑏 Brownian motion parameter 
𝑁𝑡 Thermophoresis parameter 
𝑃𝑟 Prandtl number 
𝑃𝑒𝑏 Péclet number in bioconvection 

application 
𝑅𝑒 Reynolds number 
ℓ Distance 
𝐿𝑒 Lewis number 
𝐿𝑖 Derivative operator 

𝐿𝑖
−1 Inverse derivative operator 

𝑢, 𝑣 Velocity  components  along  x-  

and  y-direction 
𝑆𝑐 Schmidt number 
𝑉, Velocity 

�̂� Velocity vector 

𝑇 Temperature 
𝑇0 Reference temperature 
𝑊𝑐 Maximum cell swimming speed 
𝜇𝑛𝑓 Dynamic viscosity of nanofluid 

𝜈 Kinematic viscosity 
𝜕 Derivative operator 

Subscript 

∎𝑛𝑓 Nanofluid 

∎𝑓 Base fluid 

∎𝑠 Solid nanoparticles 

Abbreviation 
𝑅𝐾4 Fourth order Runge-Kutta 

Method 
𝐴𝐷𝑀 Adomian Decomposition 

Method 
MLSM Modified Least Square Method 

1. Introduction

Nowadays, it is well established that the nano-
fluids play an important role in many domestic 
and industrial applications [1]. This novel 
category of fluids is created by the dispersion of 
the particles of nanometric size such as: Cu, 
Al2O3, SiC, .......... in a base fluid like water.
Nano-fluids are very useful for thermal systems 
due to the higher thermal conductivity of solid 
nanoparticles when compared to that of the base 
fluid. The "nano-fluid" term was firstly proposed 
by Choi [2-3] since 1995. Subsequently, nano-
fluids were characterized by several researchers 
experimentally [4-6] and theoretically [7-9]. Due 
to their superior thermal properties, Huminicet 
al. [10] have given an interesting review on the 

applicability of nano-fluids in thermal systems, 
especially in heat exchangers. Cheng and 
Minkowycz [11] investigated the problem of 
natural convection around a vertical flat plate 
drowned in a highly saturated porous medium. 
Nield and Kyznestov [12] proposed a 
mathematical model that characterizes the 
Cheng-Minkowycz problem for natural 
convective boundary-layer flow in a porous 
medium under the effect of a nano-fluid. 
Pourmehran et al. [13] mathematically 
characterized the convective hydromagnetic 
nano-fluid flux on a vertical plate under 
simultaneous effect of thermal radiation and 
buoyancy via differential equations. In their 
study, the governing equations were solved 
numerically by the fourth-order Runge-Kutta 
method with the firing technique. Furthermore, 
the study shows the effect of various physical 
parameters such as magnetic parameter, 
nanoparticle size, nanoparticle concentration and 
radiation parameter on dynamic and thermal 
profiles, as well as on the Skin friction and 
Nusselt number. Buongiorno [14]  attemped to 
develop a mathematical model that characterizes 
the convective transport in nanofluids and . The 
study gives momentum and heat and mass 
transfer equations. Kuznetsov [15] considers the 
mobility effect of microorganisms. The obtained 
mathematical model was solved numerically by 
the Galerkin method. In another work, Hang Xu 
et al. [16] analyzed the bio-convection flow in a 
horizontal channel under the effect of 
microorganisms’ mobility. The problem was 
solved analytically using an improved homotopy 
analysis technique. Das et al. [17] were 
interested in the bioconvection nanofluid flow in 
a porous medium. The effect of various physical 
parameters such as Brownian motion, 
thermophoresis, bio-convection of gyrotactic 
microorganisms and chemical reaction was 
investigated. The study done by by Ghorai et al. 
[18] employed the finite difference method to
solve the mathematical model provided by the
combination of the Navier-Stokes equation and
microorganisms’ conservation equation.
Kuznestov [19] reviewed the new developments
in bio-convection in a fluid-saturated porous
medium caused by either gyrotactic or oxytactic
microorganisms. The Galerkin method was used
to solve a linear stability of bio-thermal
convection that generates correspondence
between the value of the bio-convection
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Rayleigh number and the traditional thermal 
Rayleigh number. Mosayebidorcheh etal [20] 
studied the convective flow of a nano-fluid in a 
horizontal channel with the presence of 
gyrotactic microorganisms analytically. The 
mathematical model proposed by Nield and 
Kuznetsov was solved analytically by the 
Modified Least Square Method (MLSM). 
Particular attention was paid to the effects of 
various physical parameters on the evolution of 
velocity, temperature, nano-particles volume 
fraction and the density of motile 
microorganisms. Ramly et al. [21] studied the 
axisymmetric thermal radiative boundary layer 
flow of nanofluid over a stretched sheet. They 
investigated the effects of zero and nonzero 
fluxes on the thermal distribution and volumetric 
fraction of nanoparticles. Ramly et al. [22] also 
investigated the natural convection flow of 
nanofluid in Cheng-Minkowycz problem along a 
vertical plate. Rizwan Ul Haq et al. [23] 
investigated the fully developed squeezing flow 
of water functionalized magnetite nanoparticles 
between two parallel disks numerically. Three 
types of nanoparticles having better thermal 
conductivity: Magnetite (Fe3O4), Cobalt ferrite 
(CoFe2O4) and Mn–Zn ferrite (Mn–ZnFe2O4)
are added to the water base fluid.  
In recent decades, several methods were 
developed in order to solve the nonlinear initial 
or boundary values problems analytically, such 
as the Adomian Decomposition Method (ADM), 
the Homotopy Analysis Method (HAM) and the 
Variational Iteration Method (VIM). The 
concept of decomposition method pioneered by 
George Adomian [24] has been efficiently used 
by several researchers [25-27]. Also, the 
Adomian decomposition method coupled with 
Padé approximants is employed by Noor [28-30] 
for the resolution of linear and nonlinear 
differential equations. Generally, Adomian 
Decomposition Method gives the solution in the 
form of a polynomial series and can be 
accurately applied without linearization, 
discretization or digital processing. 
In the current study, Adomian decomposition 
method (ADM) is successfully applied to solve 
the nonlinear problem of nano bio-convective 
flow between two parallel plates. In fact, we 
were particularly interested on the evolution of 
velocity F (η), temperature θ (η), nano-particle 

volume fraction  (η) and density of motile 

microorganisms s (η) under the effects of several 
physical parameters such as  thermal parameter 

(𝛿𝜃), nanoparticles concentration (𝛿), 
microorganismas density parameter (𝛿𝑠) and
''𝑁𝑡/𝑁𝑏′' ratio.

2. Formulation of the problem

The heat transfer by convection in a fully 
developed flow of a nano-fluid between two 
parallel planar plates separated by a distance 2𝓵 
was considered. Fig. 1 shows the geometry of the 
investigated flow. 

       Fig. 1. The geometry of the flow channel. 

As drawn in Fig. 1, the "𝑂𝑦" axis is 
perpendicular to the walls, while the center of the 
channel is directed along the "𝑂𝑥" axis. The two 
walls (lower and upper) move (are stretched) at 
a speed of the form (𝑢 =  𝑎𝑥). The temperature 
at the walls is assumed to be constant. T1and T2
represent the temperatures of the lower and 
upper walls respectively. Moreover, the 
distribution of the nanoparticles at the base of the 
channel (lower wall) is assumed to have a 
constant C0 value. For the considered  nano-
fluid, the basic fluid is water. A stable 
suspension of non-accumulating nanoparticles 
was considered. 
Taking into account the above  assumptions, the 
continuity equation, the momentum equation, 
the energy equation, the nanoparticle volume 
fraction equation and diffusion equation, as 
suggested by Kuznestov and Nield [31], can be 
expressed as follows : 

∇ V = 0  (1) 

𝜌𝑓(V ∇)V = −∇P + μ∇
2V        (2) 

V∇𝑇 = 𝛼∇2𝑇 + 𝜏 [𝐷𝐵∇𝑇∇𝐶 + (
𝐷𝑇

𝑇0
⁄ ) ∇𝑇∇𝑇]    (3)

𝑢
= 𝑎𝑥

𝑢
= 𝑎𝑥

2ℓ 

𝑧 

𝑦 

𝑥 

𝑇2

𝑇1, 𝐶0
 

https://www.sciencedirect.com/science/article/pii/S1007570409001865#!


JCARME  M. Kezzar, et al.     Vol. 9, No. 2 

248 

(V ∇)C = 𝐷𝐵∇
2C + (

𝐷𝑇
𝑇0
⁄ )∇2𝑇       (4)                        

𝛻. 𝑗 =  0,      (5) 
where : 
V is the velocity of the flow (function of u in the 
direction Ox and v in the direction Oy). The 
terms P and T represent the pressure and the 
temperature respectively. The constant C 
characterizes the volumetric fraction of the 
nanoparticles, DB is the Brownian diffusion
coefficient and DT is the thermo-phoretic
diffusion coefficient. T0 is a reference
temperature. 
The density of a nanofluid is estimated by the 
parameter ρf and the dynamic viscosity of
nanofluid suspension is characterized by the 
term μ. The parameter τ characterizes the ratio 
((ρc)p (ρc)f⁄ ) of thermal capacities of

nanoparticles and base fluid. The term α 
represents the thermal diffusivity of the nano-
fluid. 
Brownian motion is a random motion of particles 
suspended in the fluid as a consequence of quick 
atoms or molecules collision [32]. 
Thermophores refers to the transport of particles 
resulting from the temperature gradient [33]. j is 
another parameter defined according to the fluid 
convection, self-propelled swimming, and 
diffusion. 

𝑗 =  𝑁𝑣 +  𝑁𝑣  −  𝐷𝑛𝛻𝑁, (6) 

Now, by introducing the parameters v̂ =

(
bWc

ΔC
)∇C  into the Eq. (6),we obtain:

𝑗 =  𝑁𝑣 +  𝑁(
𝑏𝑊𝑐
𝛥𝐶

)𝛻𝐶 −  𝐷𝑛𝛻𝑁 
 (7) 

Where : 
N : density of motile microorganisms. 
v  : velocity vector related to the cell swimming 
in nano-fluids. 
Dn : diffusivity of microorganisms. 
b and Wc : represent the constant of chemotaxis
and the maximum cell swimming speed 
respectively. 

For a two dimensional flow, the Eq. (2) in 
Cartesian coordinates can be expressed  as 
follows : 

u
∂u

∂x
+ v

𝜕𝑢

𝜕𝑦
= −

1

𝜌𝑓

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
)   (8)                                

u
∂v

∂x
+ v

∂v

∂y
= −

1

ρf

∂p

∂y
+ ν (

∂
2
v

∂x2
+
∂
2
u

∂y2
)   (9) 

The parameter 𝜈 =
𝜇

𝜌𝑓
 is the kinematic viscosity 

of the nano-fluid. 
Moreover, to simplify the Eqs. (1-4), the 
following equation is used: 

𝜁 =
𝜕v

𝜕𝑦
−
𝜕𝑢

𝜕𝑦
= −∇2ψ (9) 

Where 𝜁 is the vorticity function 
Taking into account Eqs. (10, 1, 2, 3 and 4) 
become: 

𝜕v

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
= 0 (11) 

𝑢
𝜕𝜁

𝜕𝑥
+ v

𝜕𝜁

𝜕𝑦
= 𝛼 (

𝜕2𝜁

𝜕𝑥2
+

𝜕2𝜁

𝜕𝑦2
) (12) 

𝑢
𝜕𝑇

𝜕𝑥
+ v

𝜕𝑇

𝜕𝑦
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
)

+ 𝜏 [𝐷𝐵∇𝑇 (
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
)

+ (
𝐷𝑇
𝑇0
) ((

𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑦
)
2

)] 

(13) 

𝑢
𝜕𝐶

𝜕𝑥
+ v

𝜕𝐶

𝜕𝑦
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2
+
𝜕2𝐶

𝜕𝑦2
) + (

𝐷𝑇
𝑇0
)
𝜕2𝑇

𝜕𝑥2

+
𝜕2𝑇

𝜕𝑦2

𝑢
𝜕𝑁

𝜕𝑥
+ v

𝜕𝑁

𝜕𝑦
+
𝜕

𝜕𝑦
(𝑁𝑣 ) = 𝐷𝑁 (

𝜕2𝑁

𝜕𝑥2
) 

With the relevant boundary conditions: 

𝜕𝑢

𝜕𝑦
= 0, v = 0 at  y =  0 

(16.a) 

𝑢 = 𝑎𝑥, v = 0, 𝑇 = 𝑇2, 𝐷𝐵
𝑑𝐶

𝑑𝑦
+

𝐷𝑇

𝑇0

𝑑𝑇

𝑑𝑦
= 0 at y = ℓ 

(16.b) 

It is very important to normalize the equations of 
the investigated flow. To achieve this goal, we 
consider the dimensionless variables 

F(), θ(),() and 𝑆(𝜂) defined by: 

𝜂 =   
𝑦
ℓ⁄  ;

(𝑥, 𝑦) =  𝑎𝑥ℓ𝐹(𝜂) ;

 𝜃(𝜂) =  
𝑇 − 𝑇0

𝑇2 − 𝑇0
 ; (17) 

(𝜂) =  
𝐶 − 𝐶0
𝐶0
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𝑆(𝜂) =
𝑁

𝑁2

Considering terms of Eq. (17), Eqs. (12-15) 

become: 

𝐹′′′′ + 𝑅𝑒(𝐹𝐹
′′′ + 4𝛼2𝐹′𝐹′′) = 0 (18) 

(𝜃′′ + 𝑅𝑒𝑃𝑟𝐹𝜃
′ +𝑁𝑏𝜃

′′ = 0 (19) 

′′ −
𝑁𝑡
𝑁𝑏
𝜃′′ − 𝑅𝑒𝐿𝑒𝐹

 ′ = 0
(20) 

𝑠′′ − 𝑃𝑒𝑏(
′𝑠′ + 𝑠′′) + 𝑅𝑒𝑆𝑐𝐹𝑠

′

= 0 

(21) 

The Boundary conditions are: 

At   𝜂 = −1𝜃(−1) = 𝛿𝜃,  (−1) = 𝛿  

and 𝑠 (−1) = 𝛿s 

(22-a) 

At   𝜂 =  0𝐹(0) =  0  
𝑎𝑛𝑑 𝐹 ′′(0)  =  0

(22-b) 

At   𝜂 = +1 𝐹(1)  =  0, 𝐹 ′ (1) =
1, 𝜃(1) = 1,  ′(1) + 𝛾𝜃 ′ (1) = 0  

and𝑠 (1) = 1 

(22-c) 

The dimensionless numbers represented in Eqs. 

(18-21) are given as: 

Reynolds number :𝑅𝑒 =
𝑎.𝐿2

𝜈

Prandtlnumber :𝑃𝑟 =
𝜈

𝑎

Parameter of Brownian motion :𝑁𝑏 =
𝜏.𝐷𝐵 .𝐶0

𝛼

Thermophoresis parameter: 𝑁𝑡 = (
𝐷𝑇

𝑇0
)
𝑇2−𝑇0

𝛼

Lewis number :𝐿𝑒 =
𝜈

𝐷𝐵

Schmidt number :𝑆𝑐 =
𝜈

𝐷𝑛

Péclet number in bioconvection application: 

𝑃𝑒b =
𝑏Wc

𝐷𝑛
Constant  𝛾 =

𝑁𝑡

𝑁𝑏

3. Adomian decomposition method

In this section, we present the basic principle of 

Adomian decomposition method. Consider the 

following nonlinear differential equation: 

𝐿(𝑦) + 𝑁(𝑦) = 𝑓(𝑡) (23) 

Where: 

𝐿 =
𝑑𝑛∎

𝑑𝑥𝑛
isthe n-order derivative operator, N is a 

nonlinear operator and 𝑓 is a given function.  

Assume that L−1  is an inverse operator that

represents n-fold integration for an n-th order of 

the derivative operator L.  Applying the inverse 

operator 𝐋−1 to both sides of (Eq. (23)) yields:

{
L−1 =∬… . .∫∎𝑑𝑥𝑛

𝐿−1𝐿(𝑦) = 𝐿−1𝑓 − 𝐿−1𝑁(𝑦)

(24) 

As a result, we obtain: 

𝑦 = 𝛽 + 𝐿−1𝑓 − 𝐿−1𝑁(𝑦) (25) 

Where β is a constant determined from the 

boundary or initial conditions. 

Now, based on the Adomian decomposition 

procedure, the solution y of the Eq. (23) can be 

constructed by a sum of components defined by 

the following infinite series: 

𝑦 = ∑𝑦𝑛

∞

𝑛=0

   (26) 

Also, the nonlinear term is given as follows: 

𝑁𝑦 =∑𝐴𝑛(𝑦0, 𝑦1, … . , 𝑦𝑛)

+∞

𝑛=0

 

 (27) 

Where: 

𝑦0 = 𝛽 + 𝐿
−1𝑓,  𝑦𝑛+1 =

−𝐿−1(𝐴𝑛).

 (28) 

An′sare called the Adomian polynomials. The

recursive formula that defines the Adomian 

polynomials [24] is given as follows: 

𝐴𝑛(𝑦0, 𝑦1, … . , 𝑦𝑛)

=
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
[𝑁 (∑𝜆𝑖

∞

𝑛=0

𝑦𝑖)]]

𝜆=0

 ,

𝑛 = 0,1,2,…. 

 (29) 

Finally, after some iterations, the solution of the 
studied equations can be given as an infinite 
series by: 
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𝑦 ≅ 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 +⋯+ 𝑦𝑛.      (30)  

The Adomian decomposition method (ADM) is 
a powerful technique which provides efficient 
algorithms for several real applications in 
engineering and applied sciences. The main 
advantage of this method is to obtain the solution 
of both nonlinear initial value problems (IVPs) 
and boundary value problems (BVPs) as fast as 
convergent series with elegantly computable 
terms while it does not need linearization, 
discretization or any perturbation.   

4. Implementing of ADM method

According to the principle of Adomian, Eqs. (18-
21) can be written as:

L1F=-Re(FF
'''+4α2F'F'')   (31) 

𝐿2𝜃 = −𝑅𝑒𝑃𝑟𝐹𝜃
′ −𝑁𝑏𝜃

′∅′  (32) 
𝐿3∅ = −(𝑁𝑡 𝑁𝑏⁄ )𝜃′′ − 𝑅𝑒𝐿𝑒𝑓∅

′  (33) 
L4s= +Peb(∅

's'+ s∅'')- (ReSc)fs
'  (34) 

Where differential operators (L1, L2, L3 and L4)

Are given by:L1 =
d4𝐹

dη4
 ,L2 =

d2𝜃

dη2 
,L3 =

d2∅

dη2 
 and

L4 =
d2𝑆

dη2 

The parameters L1, L2, L3 and L4 are the
differential operators. The inverses of these 
operators are expressed as: 

{

𝐿1
−1 =∭∫𝑭𝒅𝜼𝒅𝜼𝒅𝜼𝒅𝜼

𝜼

0

𝐿2
−1 =∬𝜽𝒅𝜼𝒅𝜼

𝜼

0

𝐿3
−1 =∬∅𝒅𝜼𝒅𝜼

𝜼

0

𝐿4
−1 =∬𝒔𝒅𝜼𝒅𝜼

𝜼

0

(35) 

By applying 𝐿𝑖
-1(𝑖 = 1,2,3,4) to the Eqs. (27-28)

and considering boundary conditions (10), we 

get: 

𝐹() =  𝐹(0) + 𝐹′(0)η +
1

2
𝐹′′(0)η2 +

1

6
𝐹′′′(0)η3 + 𝐿1

−1(−𝑅𝑒(𝐹𝐹
′′′ + 4𝛼2𝐹′𝐹′′))

   (36) 

𝜃() =  𝜃(0) + 𝜃′(0) η + 𝐿2
−1(−𝑅𝑒𝑃𝑟𝐹𝜃

′

−𝑁𝑏𝜃
′∅′)

∅() =  ∅(0) + ∅′(0) η + 𝐿2
−1(− (𝑁𝑡 𝑁𝑏)⁄ 𝜃′′

− 𝑅𝑒𝐿𝑒𝑓∅
′)

𝑠() =  𝑠(0) + 𝑠′(0) η 

+ 𝐿2
−1(+𝑃𝑒𝑏(∅

′𝑠′ +  𝑠∅′′)
− (𝑅𝑒𝑆𝑐)𝑓𝑠

′)
Where: 

NF = −Re(FF
′′′ + 4α2F′F′′) (40) 

Nθ = −RePrFθ
′ − Nbθ

′∅′ (41) 

N∅ = −(Nt Nb)⁄ θ′′ − ReLeF∅
′ (42) 

𝑁𝑠 = +𝑃𝑒𝑏(∅
′𝑠′ +  𝑠∅′′) − (𝑅𝑒𝑆𝑐)𝐹𝑠

′ (43)

The values of 

F(0), F′(0) ,F′′(0), F′′′(0) ,θ(0), θ′(0) ,∅(0),
s(0) and s′(0) mainly depend on the boundary

conditions. In fact, by applying the boundary 

conditions (8, 9) and considering: F′(0) =
𝑎0, F

′′′(0) = 𝑎1, θ(0) = 𝑎2, θ
′(0) =

𝑎3, ∅(0) = 𝑎4, ∅
′(0) = 𝑎5, s(0) = 𝑎6, s

′(0) =
𝑎7, we obtain:

𝐹(𝜂) = ∑𝐹𝑛 =

∞

𝑛=0

𝐹0 + 𝐿
−1(𝑁𝐹) (44) 

𝜃() = ∑𝜃𝑛 =

∞

𝑛=0

𝜃0 + 𝐿
−1(𝑁𝜃) (45) 

∅() = ∑∅𝑛 =

∞

𝑛=0

∅0 + 𝐿
−1(𝑁∅) (46) 

𝑠() = ∑𝑠𝑛 =

∞

𝑛=0

𝑠0 + 𝐿
−1(𝑁𝑠) (47) 

Where :𝐹0,θ0,∅0and 𝑠0 are expressed as

follows: 

F0 = 𝑎0𝜂 + 𝑎1
𝜂3

6 (48) 

θ0 = 𝑎2 + 𝑎3𝜂 (49) 

∅0 = 𝑎4 + 𝑎5𝜂 (50) 

𝑠0 = 𝑎6 + 𝑎7𝜂 (51) 

By the application of the algorithm (29), the 

polynomials (A0, A1, …… . . An) are expressed in

the following way: 
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 For velocity :

𝐴0
𝐹 =

1

3
𝑎1
2Re𝜂

3   (52-a) 

𝐴1
𝐹 = −

1

12
𝑎0𝑎1

2Re
2𝜂5 −

11

1260
𝑎1
2Re

2η7 (52-b)                                         

 For temperature

𝐴0
𝜃 = −𝑎3𝑎5Nb − 𝑎0𝑎3PrRe𝜂 −

1

6
𝑎1𝑎3PrRe𝜂

3

(53-a) 

A1
θ=a3a5

2Nb
2η+

1

2
a0a3a5LeNbReη

2

+
3

2
a0a3a5NbPrReη

2+
1

2
a0
2a3Pr

2Re
2η3

+
1

24
a1a3a5LeNbReη

4+
5

24
a1a3a5NbPrReη

4

   +
1

8
a0a1a3Pr

2Re
2η5

−
1

2520
a1
2a3PrRe

2η7+
1

144
a1
2a3Pr

2Re
2η

 (53-b) 

 For nanoparticle volume fraction:

𝐴0

− 𝑎0𝑎5LeRe𝜂 −

1

6
𝑎1𝑎5LeRe𝜂

3       (54-a) 

𝐴1

= 𝑎3𝑎5Nt +

1

Nb
𝑎0𝑎3NtPrRe𝜂 +

1

6Nb
𝑎1𝑎3NtPrRe𝜂

3 +
1

2
𝑎0
2𝑎5Le

2Re
2𝜂3 +

1

8
𝑎0𝑎1𝑎5Le

2Re
2𝜂5 −

1

2520
𝑎1
2𝑎5LeRe

2𝜂7 +
1

144
𝑎1
2𝑎5Le

2Re
2𝜂7 (54-b) 

 For density of motile microorganisms:

𝐴0
𝑠 = 𝑎5𝑎7Pre − 𝑎0𝑎7ReSc𝜂 −

1

6
𝑎1𝑎7ReSc𝜂

3                

(55-a) 

𝐴1
𝑠 = 𝑎5

2𝑎7Pre
2𝜂 − 𝑎0𝑎5𝑎6LePreRe𝜂 −

3

2
𝑎0𝑎5𝑎7LePreRe𝜂

2 −
3

2
𝑎0𝑎5𝑎7PreReSc𝜂

2 −
1

6
𝑎1𝑎5𝑎6LePreRe𝜂

3 +
1

2
𝑎0
2𝑎7Re

2Sc
2𝜂3 −

5

24
𝑎1𝑎5𝑎7LePreRe𝜂

4 −
5

24
𝑎1𝑎5𝑎7PreReSc𝜂

4 +
1

8
𝑎0𝑎1𝑎7Re

2Sc
2𝜂5 −

1

2520
𝑎1

2𝑎7Re
2Sc𝜂

7 +
1

144
𝑎1
2𝑎7Re

2Sc
2𝛈𝟕        (55-b) 

The application of Adomian Decomposition 

Method leads to the following solutions terms: 

 For velocity :

𝐹1 =
1

2520
𝑎1
2Re𝜂

7  (56-a) 

F2 = −
1

36288
𝑎0𝑎1

2Re
2η9

−
1

907200
𝑎1

3Re
2η11

     (56-b) 

 For temperature

:𝜃1 = −
1

2
𝑎3𝑎5Nb𝜂

2 −
1

6
𝑎0𝑎3PrRe𝜂

3 −
1

120
𝑎1𝑎3PrRe𝛈

𝟓 (57-a) 

θ2=
1

6
a3a5

2Nb
2η3+

1

24
a0a3a5LeNbReη

4

+
1

8
a0a3a5NbPrReη

4+
1

40
a0
2a3Pr

2Re
2η5

+
1

720
a1a3a5LeNbReη

6+
1

144
a1a3a5NbPrReη

6

+
1

336
a0a1a3Pr

2Re
2η7

−
1

181440
a1
2a3PrRe

2η9+
1

10368
a1
2a3Pr

2Re
2η9

(57-b) 

 For nanoparticle volume fraction:

∅1 = −
1

6
𝑎0𝑎5LeRe𝜂

3 −
1

120
𝑎1𝑎5LeRe𝜂

5

(58-a) 

∅2=
1

2
a3a5Ntη

2+
1

6Nb
a0a3NtPrReη

3

+
1

120Nb
a1a3NtPrReη

5+
1

40
a0
2a5Le

2Re
2η5

+
1

336
a0a1a5Le

2Re
2η7

−
1

181440
a1
2a5LeRe

2η9+
1

10368
a1
2a5Le

2Re
2η9

(58-b) 

 For density of motile microorganisms


𝑠1 =
1

2
𝑎5𝑎7Pre 𝜂

2 −
1

6
𝑎0𝑎7Re𝑆𝑐𝜂

3 −
1

120
𝑎1𝑎7Re𝑆𝑐 𝜂

5           (59-a) 
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𝑠2

=
1

6
𝑎5
2𝑎7Pre

2𝜂3

−
1

6
𝑎0𝑎5𝑎6LePreRe𝜂

3

−
1

8
𝑎0𝑎5𝑎7LePreRe𝜂

4

−
1

8
𝑎0𝑎5𝑎7PreRe𝑆𝑐𝜂

4

−
1

120
𝑎1𝑎5𝑎6LePreRe𝜂

5

+
1

40
𝑎0
2𝑎7Re

2𝑆𝑐
2𝜂5

−
1

144
𝑎1𝑎5𝑎7LePreRe𝜂

6

−
1

144
𝑎1𝑎5𝑎7PreRe𝑆𝑐𝜂

6

+
1

336
𝑎0𝑎1𝑎7Re

2𝑆𝑐
2𝜂7

−
1

181440
𝑎1
2𝑎7Re

2𝑆𝑐𝜂
9

+
1

10368
𝑎1
2𝑎7Re

2𝑆𝑐
2𝜂9 

(59-b) 

Finally, the approximate solutions for the studied 
problem are expressed as: 
 For velocity:
𝐹(𝜂) = 𝐹0 + 𝐹1 +⋯……… . . +𝐹𝑛 (60) 
 For temperature:

𝜃(𝜂) = 𝜃0 + 𝜃1 + ⋯……… . . +θn (61)           
 For nanoparticle volume fraction:
∅(𝜂) = ∅0 + ∅1 +⋯……… . . +∅𝑛 (62) 

 For density of motile microorganisms:

𝑠(𝜂) = 𝑠0 + 𝑠1 + ⋯……… . . +𝑠𝑛  (63) 

where: n is the iteration number. 

The constants 𝑎0, 𝑎1, 𝑎2,𝑎3 ……., 𝑎7 can be

easily determined with the boundary conditions 

(Eqs. (22-a) - (22.c)). 

5. Results and discussion

In this study, we were particularly interested in 

the evolution of velocity F(η), temperature θ(η), 

nano-particles volume fraction ∅(η) and density 

of motile microorganisms𝑠(η). The set of 

nonlinear differential equations (Eqs. (18-21)) 

with the boundary conditions (Eqs. (22)) are 

solved numerically and analytically. 

Numerically, the fourth-order Runge-Kutta 

method was used. Analytically, the problem is 

treated via a powerful technique of computation 

called Adomian Decomposition Method. 

Figs. 2-4 show the effect of δθ parameter on the 

temperature, the nanoparticle volume fraction 

and the density of motile microorganisms 

respectively. It can be clearly seen that the δθ 

parameter has a significant effect on the behavior 

of temperature and nanoparticle volume fraction. 

As depicted in Fig. 2, the temperature increases 

with increasing δθ parameter. One can also 

observe that the δθ parameter has more effect on 

temperature at the lower wall ( = −1) of the 

channel. In order to obtain a stable temperature 

profile along the channel, δθ parameter should 

be increased, which would result in higher 

temperature on the lower wall in comparison to 

the upper one. Furthermore, we can observe as 

displayed in Fig. 3 that the δθ parameter has 

more effect on the nanoparticle volume fraction 

at the lower wall ( = +1). This means that 

increasing temperature of the channel wall leads 

to the concentration of the nanoparticles in the 

vicinity of the upper wall; and to reach a more 

stable profile, a higher δθ value is required. 

As drawn in Fig. 4, the behavior of motile 

microogranisms density s(η) as a function of δθ 

is approximately linear. The density s (η) 

increases as the δθ parameter increases. 
 when δs = 1, Nb = 0.2, Nt = 0.4, Pr = 1. Le =
2, Peb = 1, Sc = 3. δϕ = −0.5 and Re = 0.7
Fig. 5 shows the effect of δφ parameter on the 

behavior of nanoparticle volume fraction. We 

notice that the nanoparticles volume fraction 

appears as an increasing function of δφ. 

The effect of δs parameter on the evolution of 

microorganisms’ density is shown in Fig. 6. As 

depicted, it is highly noticed that the 

microorganisms’ density raises with the augment 

of δs parameter; although δs has a bigger 

influence on the density at the level of lower wall 

of the channel (when  = −1). Moreover, the 

density profile becomes stable in the middle of 

the channel for high δs values. 
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Fig. 2. Effect of δθ parameter on the temperature 

evolution. 

Fig. 3. Effect of δθ  parameter on the evolution of 

motile microorganisms density when δs = 1, Nb =
0.2, Nt = 0.4, Pr = 1. Le = 2, Peb = 1, Sc = 3. δϕ =
−0.5 and Re = 0.7.

Fig. 4. Effect of δθ  parameter on the evolution of 

nanoparticle volume fraction when: 𝛿𝑠 = 1,𝑁𝑏 =
0.2, 𝑁𝑡 = 0.4, 𝑃𝑟 = 1. L𝑒 = 2, 𝑃𝑒𝑏 = 1, 𝑆𝑐 = 3. 𝛿𝜙 =
−0.5 𝑎𝑛𝑑 𝑅𝑒 = 0.7.

Fig. 5. Effect of δφ  parameter on the evolution of 

nanoparticle volume fraction when δs = 1, Nb =
0.2, Nt = 0.4, Pr = 1. Le = 2, Peb = 1, Sc = 3. δθ =
−0.5 and Re = 0.7.

Fig. 6. Effect of δs  parameter on the evolution of 

motile microorganisms density when δθ = 0.2, Nb =
0.2, Nt = 0.4, Pr = 1. Le = 2, Peb = 1, Sc = 3. δϕ =
−0.5 and Re = 0.7.

As can be seen from Fig. 7, the effect of the 
Nt

Nb⁄  ratio is visibly greater with high values at

the level of upper wall ( = +1). By contrast, its 
effect on the density of microorganisms, as 
visualized in Fig. 8, is more pronounced along 

the axis of the channel ( = 0). Furthermore, the 
Nt

Nb⁄  ratio does not affect the density of the

microorganisms at the level of walls ( = ±1). 

The heat transfer rate θ(−1) at the level of lower 

wall (when  = −1) is depicted in Fig. 9. It is 

clearly seen that with increasing Nt Nb⁄  ratio, the

temperature of the lower wall decreases, causing 

therefore a decrease in  heat transfer rate θ(−1). 
Additionally, the heat transfer rate θ(−1)  (or the 
Nusselt number) raises substantially with the 
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augment of Reynolds number Re. In fact, the 
forced convection parameter Re has a drastic 
effect on the thermal behavior. 
Consequently, with the increase of Reynolds 
number, the thermal layer becomes thin and 
concentrated near the wall. The greatest heat 
transfer rate is generally gained for the highest 
values of Reynolds number Re.   
Table 1 represents a comparison between 
obtained numerical and analytical results. To 
highlight the effectiveness of the adopted 
analytical technique, a comparison with other 
works [16, 20] is reported in Figs. 10-11 and 
Table 2. Based on these comparisons, there is a 
clear evidence for a good agreement between 
analytical (ADM) and numerical (RK4) data, 
justifying the efficiency and the higher accuracy 
of the used Adomian decomposition method.  

Fig. 7. Effect of Nt Nb⁄   ratio on the evolution of

nanoparticle volume fraction when δθ = 0.8, δs =
0.3, Pr = 1. Le = 1, Peb = 1, Sc = 1. δϕ =
0.2 and Re = 1.

Fig. 8.  Effect of  Nt Nb⁄  ratio on the evolution of

motile microorganisms density when δθ = 0.8, δs =
0.3, Pr = 1. Le = 1, Peb = 1, Sc = 1. δϕ =
0.2 and Re = 1.

Fig. 9. Heat transfer rate θ(−1) as a function of the 
Nt

Nb⁄  ratio when δθ = 0.5, δs = 1, Pr = 1. Le =

1, Peb = 1, Sc = 1. δϕ = 0 and Re = 5

Fig. 10. Comparison between different results for 

temperature evolution when.δs = 1. Nt = 0.2. Pr =
3. Le = Peb = Sc = 1. δθ = 0.5. δϕ = 0. and Re =
5.

Fig. 11. Comparison between different results for 

nanoparticle volume fraction evolution when . 𝛿𝑠 =
1. 𝑁𝑡 = 1. 𝑃𝑟 = 1. 𝐿𝑒 = 𝑃𝑒𝑏 = 𝑆𝑐 = 1. 𝛿𝜃 =
0.5. 𝛿𝜙 = 0. 𝑎𝑛𝑑 𝑅𝑒 = 5.
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Table 1. Comparison of numerical and analytical results when :Nb = 0.2. Nt = 0.4. Pr = 1. Le = 5. δθ =
0.8, δ∅ = 0.2, δs = 0.1. and Re = 2. 

𝐹(𝜂) 𝜃(𝜂) ∅(𝜂) 𝑠(𝜂) 

  

𝜂 
𝐹(𝜂)𝑅𝐾4 𝐹(𝜂)𝐴𝐷𝑀 𝜃(𝜂)𝑅𝐾4 𝜃(𝜂)𝐴𝐷𝑀 ∅(𝜂)𝑅𝐾4 ∅(𝜂)𝐴𝐷𝑀 𝑠(𝜂)𝑅𝐾4 𝑠(𝜂)𝐴𝐷𝑀 

-1.00 0.000000 0.000000 0.8000 0.8000 0.20000 0.20000 0.100000 0.100000 
-0.75 0.161449 0.161446 0.827456 0.827454 0.150759 0.150755 0.229558 0.229556 

-0.50 0.183032 0.183035 0.853145 0.853142 0.119607 0.119603 0.341845 0.341843 

-0.25 0.113997 0.113995 0.876783 0.876787 0.102894 0.102896 0.433844 0.433842 
0.00 0.0000 0.0000 0.899207 0.899204 0.0924287 0.0924285 0.514763 0.514766 

+0.25 −0.113997 −0.113994 0.921676 0.921673 0.0818686 0.0818684 0.596634 0.596637 
+0.50 −0.183032 −0.183036 0.945487 0.945485 0.0647272 0.0647274 0.693681 0.693683 
+0.75 −0.161449 −0.161443 0.971610 0.971614 0.0322616 0.0322617 0.824178 0.824176 

+1.00 0.000000 0.000000 1.000000 1.000000 −0.0200213 −0.0200211 1.000000 1.000000 

 

Table 2. Comparison between the adopted techniques and other works [20] when : 𝑅𝑒  =  1,  𝑃𝑟  =  1, 𝑁𝑏  =
 5, 𝑁𝑡  =  0.1, 𝐿𝑒  =  1, 𝑃𝑒𝑏  =  2, 𝑆𝑐  =  5, 𝛿𝜃 =  0.5, 𝛿𝜑 =  0.25 𝑎𝑛𝑑 𝛿𝑠 =  0. 

η θ(η)Numerical θ(η)MLSM θ(η)ADM ∅(η)Numerical ∅(η)MLSM ∅(η)ADM s(η)Numerical s(η)MLSM s(η)ADM 

-1.0 0.5   0.5 0.5 0.25 0.25 0.25 0 0 0 

-0.8 0.553149  0.550491 0.551976 0.248943 0.248374 0.248969 0.133283 0.132346 0.133255 

-0.6 0.604876  0.599782 0.602825 0.247942 0.246572 0.247989 0.249574 0.249358 0.249573 

-0.4 0.65472  0.648522 0.65207 0.247014 0.24485 0.247075 0.34617 0.347755 0.346201 

-0.2 0.702956  0.69722 0.699955 0.246147 0.243382 0.246216 0.428165 0.430306 0.428219 

0.0 0.750277  0.746252 0.747158 0.245314 0.242265 0.245388 0.502742 0.503776 0.502824 

0.2 0.797572  0.795857 0.794557 0.244482 0.241515 0.244555 0.5772 0.576945 0.577299 

0.4 0.845728  0.846136 0.84305 0.243617 0.241068 0.243685 0.658768 0.658589 0.658875 

0.6 0.895448  0.897056 0.893367 0.242692 0.240779 0.242748 0.754473 0.75548 0.750026 

0.8 0.94702  0.948446 0.945825 0.241694 0.240424 0.241734 0.869169 0.870372 0.866466 

1.0 1    1 1 0.24064 0.2397 1 1 1 1 

6. Conclusions   

 

In this paper, the dynamic and thermal problems 

of a nano-fluid flow in a horizontal channel are 

considered. As a first step, the equations 

governing the problems are described in detail. 

In the current stuyd, the model proposed by 

Kuznestov and Nield [31] was adopted. 

Thereafter, the set of differential equations 

arising from mathematical modeling (velocity 

F(η), temperature θ(η), nanoparticles volume 

fraction 𝝋(η) and motile microorganisms density 

s(η)) are solved numerically and analytically by 

the Runge-Kutta method featuring technique and 

the Adomian decomposition method (ADM) 

respectively. The effects of various physical 

parameters, namely the thermal constant '' 𝛿𝜃 '', 

the concentration constant ''𝛿𝜑'' and ''𝑁𝑡/𝑁𝑏′' 
ratio on the considered nano-fluid flow are 

visualized and discussed. 

 

The main conclusions that may be drawn from 

this study are: 

 The thermal behavior and nanoparticles 

volume fraction are affected by the δθ 

constant particularly in the vicinity of the 

walls. In this region, the effect of δθ is more 

significant. 

 The nanoparticles volume fraction is an 

increasing function of δφ parameter. 

 The nanoparticles volume fraction is 

significantly affected by the δs constant, 

especially in the vicinity of the lower wall 

( = −1). However, for high δs values, the 

profile of nanoparticles volume fraction  

becomes stable. 

 Heat transfer rate θ(−1) raises with the 

increase of Reynolds number.  

 Heat transfer rate θ(−1) appears as a 

decreasing function of  Nt Nb⁄  ratio. 
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 The obtained results highlight the robustness

of the adopted analytical Adomian 

Decomposition Method (ADM) in 

comparison with numerical results and those 

of literature. Furthermore, the comparison 

reveals the applicability, reliability and 

simplicity of the used technique. 
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