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1 Introduction

In mathematical chemistry, we discuss and predict some important properties of a chem-
ical structure by using mathematical techniques. Chemical graph theory is a branch of math-
ematical Chemistry in which we apply tools from graph theory to mathematically model the
chemical phenomenon. This theory plays a noticeable role in the fields of chemical sciences.

In last decade, graph theory has found a considerable use in this area of research. Graph
theory has provided chemist with a variety of useful tools, such as topological indices.

Cheminformatics is new subject which is a combination of chemistry, mathematics and in-
formation science. It studies quantitative structure-activitys(QSAR) and structure-property
(QSPR) relationships that are used to predict the biological activities and properties of chem-
ical com-pounds. In the QSAR/QSPR study, physico-chemical propertiess and topological
indices such as Hyper-Zagreb index, fFirst multiple Zagreb index, second multiple Zagreb
index and Zagreb polynomials are iused to predict bioactivity of their chemical compounds.

The nanostar dendrimers are part of a new group of macromolecules that appear to be
photon funnels like artificial antennas. These macromolecules and more precisely those
containing phosphorus are used in the formation of nanotubes, micro and macro capsules,
nanolatex, coloured glasses, chemical sensors, modified electrodes, etc. [1]. Nanostar den-
drimers are one of the main objects of nano biotechnology. They possess a well defined
molecular topology. Their step-wise growth follows a mathematical progression. Dendrimers
are highly ordered branched macromolecules which have attracted much theoretical and ex-
perimental attention.

Let G be a simple graph, with set of vertices V and set of edges E. A molecular Graph
is a simple connected graph where vertices denote atoms and edges denote bonds between
atoms of the chemical compound. A molecular descriptor is a single numerical value which
correlates the chemical structure with certain Physio chemical properties of the compound
and is invariant under graph automorphisms. A large class of molecular descriptors depend
on degree of vertices and are called degree based molecular descriptors. Degree of a vertex,
say, v is number of vertices joined v by an edge of the graph, and is denoted by deg(v) .

Zagreb indices are one of the oldest known topological invariants which first appeared
as terms in a formula for analysis of π-electron energy [5] and they grow with the branching
of chemical graphs. Balaban et al. [2] named them “Zagreb group indices” which later on
termed as first Zagreb index and second Zagreb index and are defined as:

M1 (G)= ∑
uv∈E(G)

[deg (u) + deg (v)] , M2 (G)= ∑
uv∈E(G)

[deg(u) ×deg(v)].

In 2013, Shirdel et al. [12] introduced hyper-Zagreb index which is defined as

HM(G) = ∑
uv∈E(G)

[deg(u) + deg(v)]2.

Ghorbani and Azimi defined first multiple Zagreb index PM1(G) and second multiple Za-
greb index PM2(G) of a graph G in 2012 [6]. These are given by the following formulae:
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Table 1. (du,dv)-type edge partition of NS1[n].
(du, dv) (1, 3) (1, 4) (2, 2) (2, 3) (2, 4) (3, 3) (4, 4)

No. of
edges

2n+2 −
6

2n+2 2n+2 − 6 9 × 2n+1 −
28

2n+1 7 × 2n −
10

2n

PM1(G) = ∏
uv∈E(G)

[deg (u) + deg (v)] , PM2(G) = ∏
uv∈E(G)

[deg(u) × deg(v)].

The first Zagreb polynomial M1 (G, x) and second Zagreb polynomial M2 (G, x) are de-
fined as:

M1 (G, x) = ∑
uv∈E(G)

x [deg(u)+deg(v)] and M2 (G,x) = ∑
uv∈E(G)

x [deg(u)+deg(v)].

These new variants of Zagreb indices have been extensively studied recently [1-13].

2 Main results

2. 1. First type of nanostar dendrimer NS1[n]
Consider the graph G of first type of nanostar dendrimer NS1[n]. The order and size of

NS1[n] nanostar dendrimers are 9 × 2n+2 − 44 and 10 × 2n+2 − 50, respectively. See Figure 1.

Figure 1. Graph of NS1[n] with n = 1, n = 2. The thick edges represent a matching. Here, b20

represents a branch of NS1[n] with 20 vertices.

The edge partition of NS1[n] with respect to the degrees of the end-vertices of edges given
by Table 1.

We compute first Zagreb index, second Zagreb index, hyper-Zagreb index HM (G), first
multiple Zagreb index PM1 (G), second multiple Zagreb index PM2 (G), Zagreb polynomials
M1 (G, x), M2 (G, x) for NS1[n] in the following theorem.

Theorem 2.1. Consider the first type of nanostar dendrimer NS1[n], then its Zagreb indices and
Zagreb polynomials are

M1 (NS1[n]) = 51 × 2n+2 − 248 .
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M2 (NS1[n]) = 247 × 2n − 300 .

HM (NS1[n]) = 533 × 2n+1 − 1252.

PM1 (NS1[n]) = 219×2n−24 × 511×2n+1−28 × 69×2n−10 .

PM2 (NS1[n]) = 39×2n+2−44 × 211×2n+2−40.

M1 (NS1[n], x) = 2nx8 + (9 × 2n − 10) x6 +
(

11 × 2n+1 − 28
)

x5 +
(

2n+3 − 12
)

x4.

M2 (NS1[n], x) = 2nx16 + (7 × 2n − 10) x9 + 2n+1x8 +
(

9 × 2n+1 − 28
)

x6

+
(

2n+3 − 6
)

x4 +
(

2n+3 − 6
)

x3.

Proof. Let G be the graph of first type of nanostar dendrimer, NS1[n]. The edge set is
partitioned into seven sets, say, E1, E2, E3, E4, E5, E6, E7 based on the degree of end vertices
of each edge. E1 contains 2n+2 − 6 edges of type uv such that deg (u) = 1, deg (v) = 3, E2

contains 2n+2 edges of type uv such that deg (u) = 1, deg (v) = 4, E3 contains 2n+2 − 6 edges
of type uv such that deg (u) = deg (v) = 2, E4 contains 9 × 2n+1 − 28 edges of type uv such
that deg(u) = 2, deg (v) = 3, E5 contains 2n+1 edges of type uv such that deg(u) = 2, deg(v)=4,
E6 contains 7 × 2n − 10 edges of type uv such that deg(u) = deg(v) = 3 and E7 contains 2n

edges of type uv such that deg(u) = deg(v) = 4.

M1 (G) = ∑
uv∈E(G)

[du + dv].

M1 (NS1 [n]) = ∑
uv∈E1

[du + dv] + ∑
uv∈E2

[du + dv] + ∑
uv∈E3

[du + dv] + ∑
uv∈E4

[du + dv]

+ ∑
uv∈E5

[du + dv] + ∑
uv∈E6

[du + dv] + ∑
uv∈E7

[du + dv]

= 4 |E1 (NS1 [n])|+ 5 |E2 (NS1 [n])|+ 4 |E3 (NS1 [n])|+ 5 |E4 (NS1 [n])|
+ 6 |E5 (NS1 [n])|+ 6 |E6 (NS1 [n])|+ 8 |E7 (NS1 [n])|
= 4

(
2n+2 − 6

)
+ 5

(
2n+2

)
+ 4

(
2n+2 − 6

)
+ 5

(
9 × 2n+1 − 28

)
+ 6

(
2n+1

)
+ 6 (7 × 2n − 10) + 8(2n) = 51 × 2n+2 − 248.

M2 (G) = ∑
uv∈E(G)

[du × dv] M2 (NS1 [n]) = ∑
uv∈E1

[du × dv] + ∑
uv∈E2

[du × dv]

+ ∑
uv∈E3

[du × dv] + ∑
uv∈E4

[du × dv] + ∑
uv∈E5

[du × dv] + ∑
uv∈E6

[du × dv]

+ ∑
uv∈E7

[du × dv] = 3 |E1 (NS1 [n])|+ 4 |E2 (NS1 [n])|+ 4 |E3 (NS1 [n])|

+ 6 |E4 (NS1 [n])| + 8 |E5 (NS1 [n])|+ 9 |E6 (NS1 [n])|+ 16 |E7 (NS1 [n])|
= 3

(
2n+2 − 6

)
+ 4

(
2n+2

)
+ 4

(
2n+2 − 6

)
+ 6

(
9 × 2n+1 − 28

)
+ 8

(
2n+1

)
+ 9 (7 × 2n − 10) + 16(2n) 247 × 2n − 300.
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HM (G) = ∑
uv∈E(G)

[du + dv]
2.

HM (NS1 [n]) = ∑
uv∈E1

[du + dv]
2 + ∑

uv∈E2

[du + dv]
2 + ∑

uv∈E3

[du + dv]
2 + ∑

uv∈E4

[du + dv]
2

+ ∑
uv∈E5

[du + dv]
2 + ∑

uv∈E6

[du + dv]
2 + ∑

uv∈E7

[du + dv]
2

= 16 |E1 (NS1 [n])|+ 25 |E2 (NS1 [n])|+ 16 |E3 (NS1 [n])|+ 25 |E4 (NS1 [n])|
+ 36 |E5 (NS1 [n])|+ 36 |E6 (NS1 [n])|+ 64 |E7 (NS1 [n])|
= 16

(
2n+2 − 6

)
+ 25

(
2n+2

)
+ 16

(
2n+2 − 6

)
+ 25

(
9 × 2n+1 − 28

)
+ 36

(
2n+1

)
+ 36 (7 × 2n − 10) + 64(2n) = 533 × 2n+1 − 1252.

PM1 (G) = ∏
uv∈E(G)

[du + dv].

PM1 (NS1 [n]) = ∏
uv∈E1

[du + dv]× ∏
uv∈E2

[du + dv]× ∏
uv∈E3

[du + dv]× ∏
uv∈E4

[du + dv]

× ∏
uv∈E5

[du + dv]× ∏
uv∈E6

[du + dv]× ∏
uv∈E7

[du + dv] = (1 + 3)|E1(NS1[n])|

× (1 + 4)|E2(NS1[n])| × (2 + 2)|E3(NS1[n])| × (2 + 3)|E4(NS1[n])|

= 42n+2−6 × 52n+2 × 42n+2−6 × 59×2n+1−28 × 62n+1 × 67×2n−10 × 82n

= 219×2n−24 × 511×2n+1−28 × 69×2n−10.

PM2 (G) = ∏
uv?E(G)

[du × dv]PM2 (NS1 [n]) = ∏
uv∈E1

[du × dv]× ∏
uv∈E2

[du × dv]

× ∏
uv∈E3

[du × dv]× ∏
uv∈E4

[du × dv]× ∏
uv∈E5

[du × dv]× ∏
uv∈E6

[du × dv]

× ∏
uv∈E7

[du × dv] = (1 × 3)|E1(NS1[n])| × (1 × 4)|E2(NS1[n])| × (2 × 2)|E3(NS1[n])|

× (2 × 3)|E4(NS1[n])|× (2 × 4)|E5(NS1[n])| × (3 × 3)|E6(NS1[n])| × (4 × 4)|E7(NS1[n])|

= 32n+2−6 × 42n+2 × 42n+2−6 × 69×2n+1−28 × 82n+1 × 97×2n−10 × 162n

= 39×2n+2−44 × 211×2n+2−40.

First and second Zagreb polynomial of NS1 [n] are computed as:

M1 (G, x) = ∑
uv∈E(G)

x[du+ dv].
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M1 (NS1 [n] , x) = ∑
uv∈ E1

x[du+ dv] + ∑
uv∈ E2

x[du+ dv] + ∑
uv∈ E3

x[du+ dv] + ∑
uv∈ E4

x[du+ dv]

+ ∑
uv∈ E5

x[du+ dv] + ∑
uv∈ E6

x[du+ dv] + ∑
uv∈ E7

x[du+ dv].

M1 (NS1 [n] , x) = (|E1(NS1[n])|)x1+3 + (|E2(NS1[n])|)x1+4 + (|E3(NS1[n])|)x2+2

+ (|E4(NS1[n])|)x2+3 + (|E5(NS1[n])|)x2+4 + (|E6(NS1[n])|)x3+3

+ (|E7(NS1[n])|)x4+4 =
(

2n+2 − 6
)

x4 +
(

2n+2
)

x5 +
(

2n+2 − 6
)

x4

+
(

9 × 2n+1 − 28
)

x5 +
(

2n+1
)

x6 + (7 × 2n − 10) x6 + (2n) x8

= 2nx8 + (9 × 2n − 10) x6 +
(

11 × 2n+1 − 28
)

x5 +
(

2n+3 − 12
)

x4.

M2 (G, x) = ∑
uv∈E(G)

x[du× dv].

M2 (NS1 [n] , x) = ∑
uv∈ E1

x[du× dv] + ∑
uv∈ E2

x[du× dv] + ∑
uv∈ E3

x[du× dv] + ∑
uv∈ E4

x[du× dv]

+ ∑
uv∈ E5

x[du× dv] + ∑
uv∈ E6

x[du× dv] + ∑
uv∈ E7

x[du× dv].

M2 (NS1 [n] , x) = (|E1 (NS1 [n])|) x1×3 + (|E2 (NS1 [n])|) x1×4+(|E3 (NS1 [n])|) x2×2

+ (|E4 (NS1 [n])|) x2×3 + (|E5 (NS1 [n])|) x2×4 + (|E6 (NS1 [n])|) x3×3

+ (|E7 (NS1 [n])|)x4×4 =
(

2n+2 − 6
)

x3 +
(

2n+2
)

x4 +
(

2n+2 − 6
)

x4

+
(

9 × 2n+1 − 28
)

x6 +
(

2n+1
)

x8 + (7 × 2n − 10) x9 + (2n) x16

= 2nx16 + (7 × 2n − 10) x9 + 2n+1x8 +
(

9 × 2n+1 − 28
)

x6

+
(

2n+3 − 6
)

x4 +
(

2n+3 − 6
)

x3.

2. 2. Second type of nanostar dendrimer NS2[n]
We denote the molecular graph of polyphenylene nanostar dendrimer by NS2[n]. The

order and size of NS2[n] nanostar dendrimers are 15 × 2n+3 − 95 and 35 × 2n+2 − 112, re-
spectively. See Figure 2.

The edge partition of NS2[n] with respect to the degrees of the end-vertices of edges given
by Table 2.

We compute first Zagreb index, second Zagreb index, hyper-Zagreb index HM (G), first
multiple Zagreb index PM1 (G), second multiple Zagreb index PM2 (G), Zagreb polynomials
M1 (G, x), M2 (G, x) for NS2[n] in the following theorem.
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Figure 2. Graph of NS2[n] with n = 1, n = 2. NS2[n] is also known as Polyphenylene dendrimer. The
thick edges represent a matching.

Table 2. (du,dv)-type edge partition of NS2[n].
(du, dv) (2, 2) (2, 3) (3, 3) (3, 4)

No. of
edges

7 × 2n+3 − 40 11 × 2n+2 −
32

10 × 2n+2 −
44

4

Theorem 2.2. Consider the first type of nanostar dendrimers NS2[n], then its Zagreb indices and
Zagreb polynomials are

M1 (NS2[n]) = 7 × 2n+5 + 115 × 2n+2 − 556 .

M2 (NS2[n]) = 7 × 2n+5 + 78 × 2n+3 − 700 .

HM (NS2[n]) = 7 × 2n+7 + 45 × 2n+5 + 275 × 2n+2 − 2828.

PM1 (NS2[n]) = 219×2n+3−124 × 35×2n+3−44 × 511×2n+2−32 × 74.

PM2 (NS2[n]) = 267×2n+2−104 × 331×2n+2−116 .

M1 (NS2[n], x) = 7x7 +
(

5 × 2n+3 − 44
)

x6 +
(

11 × 2n+2 − 32
)

x5

+
(

7 × 2n+3 − 40
)

x4M2.

(NS2[n], x) = 4x12 +
(

5 × 2n+3 − 44
)

x9 +
(

11 × 2n+2 − 32
)

x6 +
(

7 × 2n+3 − 40
)

x4.

Proof. Let G be the graph of first type of nanostar dendrimers, NS2[n]. The edge set is
partitioned into four sets, say, E1, E2, E3, E4 based on the degree of end vertices of each edge.
E1 contains 7 × 2n+3 − 40 edges of type uv such that deg (u) = deg (v) = 2, E2 contains
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11 × 2n+2 − 32 edges of type uv such that deg (u) = 2 , deg (v) = 3, E3 contains 10 × 2n+2 −
44 edges of type uv such that deg (u) = 3, deg (v) = 3, E4 contains 4 edges of type uv such
that deg (u) = 3, deg (v) = 4.

M1 (G) = ∑
uv∈E(G)

[du + dv].

M1 (NS2 [n]) = ∑
uv∈E1

[du + dv] + ∑
uv∈E2

[du + dv] + ∑
uv∈E3

[du + dv] + ∑
uv∈E4

[du + dv]

= 4 |E1 (NS2 [n])|+ 5 |E2 (NS2 [n])|+ 6 |E3 (NS2 [n])|+ 7 |E4 (NS2 [n])|
= 4(7 × 2n+3 − 40) + 5(11 × 2n+2 − 32) + 6(10 × 2n+2 − 44) + 7(4)

= 7 × 2n+5 + 115 × 2n+2 − 556.

M2 (G) = ∑
uv∈E(G)

[du × dv].

M2 (NS2 [n]) = ∑
uv∈E1

[du × dv] + ∑
uv∈E2

[du × dv] + ∑
uv∈E3

[du × dv] + ∑
uv∈E4

[du × dv]

= 4 |E1 (NS2 [n])|+ 6 |E2 (NS2 [n])|+ 9 |E3 (NS2 [n])|+ 12 |E4 (NS2 [n])|
= 4(7 × 2n+3 − 40) + 6(11 × 2n+2 − 32) + 9(10 × 2n+2 − 44) + 12(4)

= 7 × 2n+5 + 78 × 2n+3 − 700.

HM (G) = ∑
uv∈E(G)

[du + dv]
2.

HM (NS2 [n]) = ∑
uv∈E1

[du + dv]
2 + ∑

uv∈E2

[du + dv]
2 + ∑

uv∈E3

[du + dv]
2 + ∑

uv∈E4

[du + dv]
2

= 16 |E1 (NS2 [n])|+ 25 |E2 (NS2 [n])|+ 36 |E3 (NS2 [n])|+ 49 |E4 (NS2 [n])|
= 16(7 × 2n+3 − 40) + 25(11 × 2n+2 − 32) + 36(10 × 2n+2 − 44) + 49(4)

= 7 × 2n+7 + 45 × 2n+5 + 275 × 2n+2 − 2828.

PM1 (G) = ∏
uv∈E(G)

[du + dv].

PM1(NS2[n]) = ∏
uv∈E1

[du + dv]× ∏
uv∈E2

[du + dv]× ∏
uv∈E3

[du + dv]× ∏
uv∈E4

[du + dv]

= (2 + 2)|E1(NS2[n])| × (2 + 3)|E2(NS2[n])| × (3 + 3)|E3(NS2[n])|

× (3 + 4)|E4(NS2[n])| = 47×2n+3−40 × 511×2n+2−32 × 610×2n+2−44 × 74

= 219×2n+3−124 × 35×2n+3−44 × 511×2n+2−32 × 74.
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PM2 (G) = ∏
uv?E(G)

[du × dv].

PM2 (NS2 [n]) = ∏
uv∈E1

[du × dv]× ∏
uv∈E2

[du × dv]× ∏
uv∈E3

[du × dv]× ∏
uv∈E4

[du × dv]

= (2 × 2)|E1(NS2[n])| × (2 × 3)|E2(NS2[n])| × (3 × 3)|E3(NS2[n])|

× (3 × 4)|E4(NS2[n])| = 47×2n+3−40 × 611×2n+2−32 × 910×2n+2−44 × 124

= 267×2n+2−104 × 331×2n+2−116 .

First and second Zagreb polynomial of NS2 [n] are computed as:

M1 (G, x) = ∑
uv∈E(G)

x[du+ dv].

M1 (NS2 [n] , x) = ∑
uv∈ E1

x[du+ dv] + ∑
uv∈ E2

x[du+ dv] + ∑
uv∈ E3

x[du+ dv] + ∑
uv∈ E4

x[du+ dv]

= (|E1 (NS2 [n])|) x2+2 + (|E2 (NS2 [n])|) x2+3+(|E3 (NS2 [n])|) x3+3

+ (|E4 (NS2 [n])|) x3+4 = (7 × 2n+3 − 40)x4 + (11 × 2n+2 − 32)x5

+ (10 × 2n+2 − 44)x6 + (4)x7.

M2 (G, x) = ∑
uv∈E(G)

x[du× dv].

M2 (NS2 [n] , x) = ∑
uv∈ E1

x[du× dv] + ∑
uv∈ E2

x[du× dv] + ∑
uv∈ E3

x[du× dv] + ∑
uv∈ E4

x[du× dv].

M2 (NS2 [n] , x) = (|E1 (NS2 [n])|) x2×2 + (|E2 (NS2 [n])|) x2×3+(|E3 (NS2 [n])|) x3×3

+ (|E4 (NS2 [n])|) x3×4

= (7 × 2n+3 − 40)x4 + (11 × 2n+2 − 32)x6 + (10 × 2n+2 − 44)x9 + (4)x12.

2. 3. Third type of nanostar dendrimer NS3[n]
Consider the graph G of first type of nanostardendrimers, NS3[n]. Since NS3[n] is a uni-

cyclic graph, its order and size are same and are equal to 3 × 2n+1 + 3. See Figure 3.
The edge partition of NS3[n] with respect to the degrees of the end-vertices of edges given

by Table 3.
We compute first Zagreb index, second Zagreb index, hyper-Zagreb index HM (G), first

multiple Zagreb index PM1 (G), second multiple Zagreb index PM2 (G), Zagreb polynomials
M1 (G, x), M2 (G, x) for NS3[n] in the following theorem.
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Figure 3. Graph of NS3[n] with n = 1,2,3. The thick edges represent a matching.

Table 3. (du,dv)-type edge partition of NS3[n].
(du, dv) (1, 3) (2, 3) (3, 3)

No. of
edges

3 × 2n 6 3× 2n − 3

Theorem 2.3. Consider the first type of nanostardendrimers NS3[n], then its Zagreb indices and
Zagreb polynomials are

M1 (NS3[n]) = 15 × 2n+1 + 12 .

M2 (NS3[n]) = 9 × 2n+2 + 9 .

HM (NS3[n]) = 39 × 2n+2 + 42.

PM1 (NS3[n]) = 29×2n−3 × 33×2n−3 × 56.

PM2 (NS3[n]) = 39×2n × 26.

M1 (NS3[n], x) = (3 × 2n − 3) x6 + 6x5 + (3 × 2n) x4.

M2 (NS3[n], x) = (3 × 2n − 3) x9 + 6x6 + (3 × 2n) x3.

Proof. Let G be the graph of first type of nanostardendrimers, NS3[n]. The edge set is
partitioned into three sets, say, E1, E2, E3 based on the degree of end vertices of each edge.
E1 contains 3 × 2n edges of type uv such that deg (u) = 1, deg (v) = 3, E2 contains 6 edges
of type uv such that deg (u) = 2 , deg (v) = 3, E3 contains 3 × 2n − 3 edges of type uv such
that deg (u) = deg (v) = 3.

M1 (G) = ∑
uv∈E(G)

[du + dv].

M1 (NS3 [n]) = ∑
uv∈E1

[du + dv] + ∑
uv∈E2

[du + dv] + ∑
uv∈E3

[du + dv]

= 4 |E1 (NS3 [n])|+ 5 |E2 (NS3 [n])|+ 6 |E3 (NS3 [n])|
= 4 (3 × 2n) + 5 (6) + 6(3 × 2n − 3) = 15 × 2n+1 + 12.
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M2 (G) = ∑
uv∈E(G)

[du × dv].

M2 (NS3 [n]) = ∑
uv∈E1

[du × dv] + ∑
uv∈E2

[du × dv] + ∑
uv∈E3

[du × dv]

= 3 |E1 (NS3 [n])|+ 6 |E2 (NS3 [n])|+ 9 |E3 (NS3 [n])|
= 3 (3 × 2n) + 6 (6) + 9(3 × 2n − 3) = 9 × 2n+2 + 9.

HM (G) = ∑
uv∈E(G)

[du + dv]
2.

HM (NS3 [n]) = ∑
uv∈E1

[du + dv]
2 + ∑

uv∈E2

[du + dv]
2 + ∑

uv∈E3

[du + dv]
2

= 16 |E1 (NS3 [n])|+ 25 |E2 (NS3 [n])|+ 36 |E3 (NS3 [n])|
= 16 (3 × 2n) + 25 (6) + 36(3 × 2n − 3) = 39 × 2n+2 + 42.

PM1 (G) = ∏
uv∈E(G)

[du + dv].

PM1 (NS3 [n]) = ∏
uv∈E1

[du + dv]× ∏
uv∈E2

[du + dv]× ∏
uv∈E3

[du + dv]

= (1 + 3)|E1(NS3[n])| × (2 + 3)|E2(NS3[n])| × (3 + 3)|E3(NS3[n])|

= 43×2n × 56 × 63×2n−3 = 29×2n−3 × 33×2n−3 × 56.

PM2 (G) = ∏
uv?E(G)

[du × dv]

PM2 (NS3 [n]) = ∏
uv∈E1

[du × dv]× ∏
uv∈E2

[du × dv]× ∏
uv∈E3

[du × dv]

= (1 × 3)|E1(NS3[n])| × (2 × 3)|E2(NS3[n])| × (3 × 3)|E3(NS3[n])|

= 33×2n × 66 × 93×2n−3 = 39×2n × 26.

First and second Zagreb polynomial of NS3 [n] are computed as:

M1 (G, x) = ∑
uv∈E(G)

x[du+ dv].

M1 (NS3 [n] , x) = ∑
uv∈ E1

x[du+ dv] + ∑
uv∈ E2

x[du+ dv] + ∑
uv∈ E3

x[du+ dv].
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M1 (NS3 [n] , x) = (|E1 (NS3 [n])|) x1+3 + (|E2 (NS3 [n])|) x2+3+(|E3 (NS3 [n])|) x3+3

= (3 × 2n) x4 + 6x5 + (3 × 2n − 3) x6 = (3 × 2n − 3) x6 + 6x5 + (3 × 2n) x4.

M2 (G, x) = ∑
uv∈E(G)

x[du× dv].

M2 (NS3 [n] , x) = ∑
uv∈ E1

x[du× dv] + ∑
uv∈ E2

x[du× dv] + ∑
uv∈ E3

x[du× dv].

M2 (NS3 [n] , x) = (|E1 (NS3 [n])|) x1×3 + (|E2 (NS3 [n])|) x2×3+(|E3 (NS3 [n])|) x3×3

= (3 × 2n) x3 + 6x6 + (3 × 2n − 3) x9 = (3 × 2n − 3) x9 + 6x6 + (3 × 2n) x3.

3 Conclusion

In this paper, we consider some infinite families of nanostar dendrimers. Different vari-
ants of Zagreb indices and Zagreb polynomials are analysed for nanostar dendrimers us-
ing edge partition based on degree of vertices of the edges of the corresponding chemical
graphs. We found exact relations of First Zagreb index, second Zagreb index, hyper Zagreb
index, multiplicative Zagreb indices as well as Zagreb polynomials for nanostar dendrimers.
In future, we are interested to found some new chemical compound and then study their
topological indices which will be quite helpful to understand their underlying topologies.
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