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Abstract. In the study of QSPR/QSAR, topological indices such as Zagreb index, Randic index,
atom-bond connectivity index are exploited to estimate the bioactivity of chemical compounds. In-
spired by many degree based topological indices, we propose here a new topological index, called
the atom bond connectivity temperature index ABCT(G) of a molecular graph G which shows good
correlation with entropy, acentric factor, enthalpy of vaporization and standard enthalpy of vapor-
ization of an octane isomers. In this paper, we compute the atom bond connectivity temperature
index ABCT(G) of line graphs of subdivision graphs of 2D—lattice, nanotube and nanotorus of
TUC4C8 [p, C]] .
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1 Introduction

Molecular descriptors are playing significant role in chemistry, pharmacology, etc. Among them,
topological indices have a prominent place [13]. There are numerous of topological descriptors that
have found some applications in theoretical chemistry, especially in QSPR/QSARresearch [2,6,7].
Within all topological indices one of the most investigated are the descriptors based on the valences
of atoms in molecules (in graph-theoretical notions degrees of vertices of graph) [11].

Topological indices are numerical parameters of a graph which are invariant undergraph isomor-
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phism. For a collection of recent results on topological indices, we refer the interested reader to the
articles [1,3,5].

Let G be a connected graph of order n and size m. Let V(G) and E(G) be vertex and edge sets of
G, respectively. An edge joining the vertices u and v is denoted by uv. The degree of a vertex u in a

graph G is the number of edges incidence to # and is denoted by d,, or d(u).

The temperature of a vertex u of a connected graph G is defined by Siemion Fajtlowiczas [12].

where d, is the degree of a vertex u and n is the size of a graph G. Ernesto Estrada et al. proposed a
new index, nowadays known as the atom-bond connectivity (ABC) index [4]. This index is defined
as follows:

ABC(G)= ) di+

1 2
uveE(G) v

dy  dudy’

Recently Kishori P N, et al. have introduced temperature index, Harmonic TI and geometric arith-
metic TI of a graph in [9], [8] and [10], respectively and we extend this study for atom bond con-
nectivity temperature index. Inspired by the work on degree based topological indices and atom
bond connectivity index, we now define the atom bond connectivity temperature index ABCT (G) of
a molecular graph G as follows:

Tu"—TU_z

ABCT(G)= ) T,

uveE(G)

7

where T, and T, are the temperature of the vertex u and v, respectively.

2 On chemical applicability of the atom bond connectivity temperature index

In this section we will discuss the regression analysis of entropy (S), acentric factor (AcentFac),
enthalpy of vaporization (HVAP) and standard enthalpy of vaporization (DHVAP) of an octane iso-
mers on the Atom Bond Connectivity temperature index of the corresponding molecular graph. The
productivity of ABCT is tested using a dataset of octane isomers (Table I), found at

http : / /www.moleculardescriptors.eu/dataset.htm.

It is shown in Table II, that the ABCT-index has a good correlation with the entropy (R = 0. 856),
acentric factor (R = 0.879), standard enthalpy of vaporization (R = 0.912) and enthalpy of vaporiza-
tion (R =0.887) of octane isomers.
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Table I: Experimental values of the entropy, acentric factor, enthalpy of vaporization, standard
enthalpy of vaporization and the corresponding values of atom bond connectivity
temperature index of octane isomers.

Alkane S AcentFac HVAP DHVAP ABCT
n-octane 111.67  0.397898 73.19 9915 28.985
2-methyl-heptane 109.84 0377916 703  9.484 26.242
3-methyl-heptane 11126 0371002 713  9.521 23.672
4-methyl-heptane 109.32  0.371504 7091 9.483 23.672
3-ethyl-hexane 10943  0.362472 71.7 9476 27.6115
2,2-dimethyl-hexane 103.42  0.339426 67.7 8951 21.523
2,3-dimethyl-hexane 108.02  0.348247 702  9.272 24.5604
2,4-dimethyl-hexane 106.98  0.344223 68.5 9.029 24211
2,5-dimethyl-hexane 105.72  0.35683 68.6 9.051 23.5269
3,3-dimethyl-hexane 10474  0.322596 68.5  8.973 21.524
3,4-dimethyl-hexane 106.59  0.340345 702  9.316 24.4023
2-methyl-3-ethyl-pentane 106.06  0.332433 69.7  9.20 9
22.770
3-methyl-3-ethyl-pentane 101.48  0.306899 69.3 9.081 23.862
2,2,3-trimethyl-pentane 101.31  0.300816 67.3 8.826 20.067
2,2 4-trimethyl-pentane 104.09  0.30537  64.87  8.402 18.008
2,3,3-trimethyl-pentane 102.06  0.293177 68.1 8.897 20.552
2,3,4-trimethyl-pentane 102.39  0.317422 68.37 9.014 20.194
2,2,3,3-tetramethylbutane 93.06 0.255294  66.2 8.410 14.748
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Figure 1. Scatter plot of ABCT of octane isomers with (a) S, (b) AcentFac, (c) HVAP and (d) DHVAP
respectively.

Figure 1 (a — d) shows the Scatter plot between entropy S, acentric factor AcentFac, enthalpy of
vaporization HVAP, standard enthalpy of vaporization DHVAP of octane isomers and atom bond
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Figure 2. a) 2D—lattice of TUC4Cg[4,3]. b) TUC4Cg[4,3] nanotube. ¢) TUC4Cs[4,3] nanotorus.

TN
(a)

Figure 3. (a) subdivision graph of 2D —lattice of TUC4Cs[4,3], (b) line graph of sub-division graph
of TUC4C8 [4,3]

connectivity temperature index respectively. The correlation coefficient R of the entropy, acentric
factor, enthalpy of vaporization, standard enthalpy of vaporization with the atom bond connectivity
temperature index is as reported in Table II.

Table II. Correlation coefficient of Atom Bond Connectivity Temperature Index.
Atom Bond Connectivity Temperature index with  Correlation coefficient (R)

Entropy (S) 0.856
Acentric factor (AcentFac) 0.879
Enthalpy of vaporization (HVAP) 0.887
Standard enthalpy of vaporization (DHVAP) 0.912

3 Result for 2D —Lattice of TUC4Cg [p,q]

Figure 2 (a), (b) and (c) show 2D —lattice of TUC4Cg[4,3], TUC4Cg[4,3] nanotube and TUC4Cg[4, 3]
nanotorus, respectively. The line graph of the subdivision graph of 2D—lattice of TUC4Cs|p,q] is
shown in Figure VI(b).
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Table III. The edge partition of the graph G.

(T,T,), where uv € E(G) Number of edges

<26Pq p—q)—2" 2(6pq— P q)—2 ) 2p+29+4

(261%7 P 7)—2" 2(6pq— P 7)-3 dp+4q-8

(2 (6pq— P q)—3" 2(6pq— P 7)-3 18pg — 1lp —
11 +4

Theorem 3.1. Let G be the line graph of the subdivision graph of 2D —Lattice of TUC4Cg [p,q]. Then

ABCT(G) =2v2(2+p+9) /= (1+q— p[-1+64)) (29— p[-1+ 6q])

2
+§(4—11q—11p—|—18pq)\/—(3+2q—2p[—1+6q])(3+q—p[—1+6q])

4 442 82
+4(—2+P+q)\/—4— gpz(l —64)* — 57 — % +p[-5+ 7[7 +1642].

Proof. The subdivision graph of 2D —lattice of TUC4Cg [p,q| and the graph G are shown in Figure 3
(a) and (D) respectively. In G there are total 2(6pg — p — q) vertices among which 4(p + gq) vertices are
of temperature W and all the remaining vertices are of temperature W. The total
number of edges of G is 18pg — 5p — 5g. Therefore, we get the edge partition based on the temperature
of the vertices as shown in Table III. Therefore

ABCT(G)= ),
uveE(G)

Tu + Tz; - 2
TuTy

(e ra2) + (Graras) —2
(i 3372) (s sa72)
(e s2) * (s ya3) =2
(2(617117?7*«7)*2) (2(617!1*:;*«7)*3)
(semma=s) * sa—ya=s ~ 2

<2(6P11—?I:’—‘7)—3) <2(6P‘7—:’:’—‘i)—3)

=2V22+p+4)y/~ (1 +4—p[-1+6]) (2+q—p[~1+6q))

2
+§(4—11q—11p+18pq)\/—(3+2q—2p[—1+6q])(3+q—p[—1+6q])

=(2p+29+4)

+ (4p+4q9—38)

+ (18pg — 11p — 119+ 4)

4 442 82
+4(—2+p+q)\/—4—3;92(1—611)2—5(]—g+p[—5+3q+16q2].

4 Result for TUC4Cs[p,q]| nanotube

The line graph of the subdivision graph of TUC4Cs [p,q] nanotube is shown in Figure 4 (b).
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Figure 4. (a) subdivision graph of TUC4Cg[4,3] nanotube, (b) line graph of subdivision graph of
TUC4Cs[4,3] nanotube.

Table IV. The edge partition of the graph H.

(Tu,Tv) where uv € E(H) Number of edges
< 12pg— 2p 27 12pq— 2p ) 2p

( (12pg— 2p —27 (12pq— Zp 3) 4p

< (12pg— 2p —3’ (12pq— Zp 3) 18pg —11p

Theorem 4.1. Let H be the line graph of the subdivision graph of of TUC4Cs [p,q] nanotube. Then

. 6
ABCT (H) = 5 (~11p +18pq) | =3 — 2p + 12pq \/“2+ —3—2p+12pq‘
t2py 2 |(—3 - 2p +12pg) (—2—2p + 12pg) 2+ > + :
21 p+12pg p+12pg 3 2p+12pg | —2—2p+ 12pg
4
—|—p|—2—2p+12pq|\/‘—2—|—_2_2p+12pq’.

Proof. The subdivision graph of TUC4Cg[p,q] nanotube and the graph H are shown in Figure VII (a)
and (b) respectively. In H there are 12pg — 2p vertices among which 4p vertices are of temperature
W and all the remaining vertices are of temperaturem. The total number of edges of
H is 18pq — 5p. Therefore we get the edge partition, based on the temperature of the vertices as shown
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Figure 5. (a) Subdivision graph of TUC,4Cs[4,2] nanotorus, (b) line graph of subdivision graph of
TUC4Cg[4,2] nanotorus.

in Table IV. Thus,

2 % 2
(12pg—2p)—2 = (12pq—2p)-2

2 2
55 T s — 2
ABCT (H) = 2p ((12;"1 2p)-2 = (12pq—2p)-2 )

2 » 3
(12pg—2p)—2 ~ (12pg—2p)-3

+4p ((12w7*22p)72 - (12qu32p)73 B 2)

((121%132?)—3 * (1217113217)—3 )
+ (18pg — 11p)

3 < 3
(12pg—2p)—3 * (12pq—2p)-3

: 6
_3(—11p—|—18pq)\—3—2]0+12p‘7|\/’_2"’__3_2p+12pq‘
+2p [ 2|(=3—2p +12pg) (2~ 2p + 12pg) 2+ : * :
NE p+12pg p+12pq —3-2p+12pg —2—2p+12pg
4
+p|—2—2p+12pq|\/‘—2+_2_2p+1zpq"

5 Result for TUC,4Cs [p,q| nanotorus

The line graph of the subdivision graph of TUC4Cg [p,q] nanotorus is shown in Figure 8 (b).

Table V. The edge partition of the graph K.
(T, Tv), where uv € E(K) Number of edges

(=) 18pq

Theorem 5.1. Let K be the line graph of the subdivision graph of TUC4Cs [p,q] nanotorus. Then

6
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Proof. The subdivision graph of TUC4Cs [p,q]| nanotorus and the graph K are shown in Figure VIII
(a) and (b), respectively. In K there are 12pq vertices, all of them are of temperature T‘Z_y The total
number of edges of K is 18pq. Therefore we get the edge partition, based on the temperature of the
vertices as shown in Table V. Therefore,

3 3
(12pq73 + 12pg—3 2)
3 3
2pg—3 X 12p7—3

ABCT (K) =18pq

=

:6pq(—3 + 12}76])\/‘ —2+ m

6 Conclusion

In this paper, we have introduced a new topological index namely, atom bond connectivity tem-
perature index of molecular graph. It has been shown that this index can be used as predictive
tool in QSPR/QSAR researches. We have obtained the expressions for the atom bond connectiv-
ity temperature index of the line graph of subdivision graph of 2D —lattice, nanotube and nanotorus
of TUC4C8 [p,q]
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