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Abstract. We exhibit a polynomial time algorithm that computes the Clar number of any nan-
otube. This algorithm can be easily extended to one that computes the Clar number of fullerenes
whose pentagon-clusters are all of even size. Computing the Clar number of planar graphs is NP-
hard. However, it is not known if computing the Clar number of fullerenes is a tractable problem. We
show that the latter problem can be suitably approximated in polynomial time. We also discuss the
existence of fpt-algorithms for this important problem of cheminformatics.
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1 Introduction

Fullerene graphs are the graphical representation of fullerene molecules, an important class
of carbon molecules that has became very important in material science and technology.
Therefore, fullerene graphs have attracted the attention of many researchers in the last decade
and, as a consequence, nowadays we know many things about fullerenes. However, there are
also many questions that remain unanswered. We study one of those questions, the question
about the existence of efficient algorithms computing the Clar number of fullerenes. The Clar
number is a topological index of planar graphs, an index that seems to be related to molec-
ular stability [10]. It is known that computing the Clar number of general planar graphs is
NP-hard (see [3]), and it is also known that the same problem can be solved in polynomial
time for bipartite planar graphs (see [1]). Fullerene graphs are almost bipartite, any fullerene
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has exactly 12 odd faces, and it means that fullerene are only 12 faces apart from bipartite-
ness and proved tractability, however it is not known if the Clar number of fullerene can be
computed in polynomial time.

Organization of the work and contributions. This work is organized into five sections
including the introduction. In section 2 we introduce the Clar number of fullerene. In section
3 we extend the latter notion to general planar graphs, and we discuss some results that are
related to the computation of the Clar number for several different classes of planar graphs.
In section 4 we exhibit a polynomial time algorithm that can be used to compute the Clar
number of nanotubes and fullerenes of even signatures. In section 5 we discuss the case of
odd signatures. We study the existence of approximation algorithms, as well as the existence
of fpt-algorithms, for this demanding problem (see [7]).

2 The Clar number of fullerenes

Fullerene graphs are 3-connected planar cubic graphs, whose faces are either hexagons or
pentagons. Fullerene graphs are of special interest in chemical graph theory. It happens that
those graphs are the molecular graphs of the carbon molecules called fullerene. In this work we
study an algorithmic problem related to fullerene graphs. First, we declare some definitions.

Definition 1. Given a graph G, a perfect matching of G is a set of pairwise node-disjoint edges
which covers the whole graph.

Thus, given graph G and given a perfect matching M, it must happen that:

1. Given e ̸= s two edges in M, those two edges do not have a common node.

2. Given v, a node of G, there exists e ∈ M such that e covers v (v is incident with e).

Recall that G is a cubic graph, if and only if, all the nodes of G have degree three. No-
tice that if G is a cubic graph representing a carbon molecule, then the perfect matchings
of G correspond to the Kekule structures of the molecule. The number of different Kekule
structures (the number of perfect matchings) is a structural index that encodes important in-
formation about the physico-chemical properties of the molecule. Sometimes it is necessary
to compute the exact number of Kekule structures (a task that can be efficiently solved for
planar molecules using Kasteleyn’s algorithm [13]), other times it is sufficient to ensure that
the number of Kekule structures is large.

It was conjectured for long time that fullerene graphs have exponential many perfect
matchings. Observe that the later conjecture is a special case of The Lovasz-Plummer Con-
jecture stating that cubic bridgeless graphs have exponential many perfect matchings (see [6]
and the references therein). The conjecture was proved for fullerene graphs by Kardoš, Kral
and co-workers [11], and very recently for general cubic bridgeless graphs by Kral et al [6].
It is worth to remark that some of the key ideas introduced in [11] were instrumental in the
constructions that were used in [6] to settle the Lovasz-Plummer conjecture. This suggests
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that fullerene graphs could play the important role of a drosophila that could be used to test
conjectures about cubic (planar) graphs. Important evidence concerning the later claim is
provided by the recent attack to Barnette Conjecture [12]. In the aforementioned reference F.
Kardoš proved the conjecture for fullerene, and then he extended his proof to planar graphs
with faces of size at most six.

Kardoš, Kral et al proved that there exists C > 0, such that any fullerene graph with n
nodes has at least 2Cn perfect matchings. To this end, they proved that any fullerene graph
admits a matching with a large number of resonant hexagons. Given a fullerene graph G and
given a perfect matching M, a resonant hexagon for M is a hexagonal face C such that C ∩ M
is constituted by exactly three edges. Notice that given a perfect matching M and a resonant
hexagon for M, say C, one can define a new matching M{C} by excluding the three edges in
M ∩ C, and replacing them by the three edges in Mc ∩ C (here Mc denotes the complement
of M). Now suppose that there are K resonant hexagons for M, say C1, ...,CK, which are
node-disjoint (pairwise node-disjoint). Given J ⊂ {1, ...,K}, one can construct a new perfect
matching M{Ci :i∈J} by simply switching the edges for each one of the hexagons in the set
{Ci : i ∈ J} , that is: For all i ∈ J, one excludes the three edges in M ∩ Ci, and he replaces them
by the three edges in Mc ∩Ci. It is clear that given J ̸= I, the matchings M{Ci :i∈J} and M{Ci :i∈I}
are different. Thus, if there exist K node-disjoint resonant hexagons for the perfect matching
M, then there exist at least 2K different perfect matchings of G, which can be constructed from
M using the K resonant hexagons. We say that such a set of node-disjoint resonant hexagons
is a Clar set for M. The Clar number of M, denoted by C (M, G) , is equal to

max{|A| : A is a Clar set for M} .

The Clar number of G, denoted by Clar (G), is equal to

max{C (M, G) : M is a perfect matching of G} .

Notice that if Clar (G) = K, the graph G has at least 2K perfect matchings. Then, if G has
a large Clar number, it must have a large number of perfect matchings (Kekule structures).
Kardoš, Kral et al proved that the Clar number of fullerene G is bounded below by n−380

61 ,
provided that G is a non-nanotube with n nodes [11]. This implies that the latter type of
fullerene have exponential many matchings. It is easy to prove that nanotubes also have
exponential many matchings. Thus, we have that The Lovasz-Plummer Conjecture holds
true for the class of fullerene graphs.

Remark 1. The above purely theoretical fact seems to imply that all the fullerene molecules
are stable (see [10]). The Clar number was introduced by Clar (see [4]), and it was proposed
as a numerical index that could be useful in the study of benzenoids. If G is a molecular
graph, the quantity Clar (G) carries important information about the structural and physico-
chemical properties of the corresponding molecule. It has been observed that a combination
of Clar and Kekule numbers can be used as an indicator of the relative stability of fullerenes
and other planar molecules (see [15]). We can efficiently compute the Kekule number of pla-
nar (carbon) molecules using Kasteleyn algorithm [13], can we efficiently compute the Clar
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number of those molecules? It seems that computing the Clar number of planar molecules is
an important task of cheminformatics.

3 On computing the Clar number of fullerene graphs and general planar graphs

We can straightforwardly extend the notion of Clar number to planar graphs. Let G be a
planar graph, and let c be a planar representation of G. Suppose that M is a perfect matching
of G. The quantity Clar (G, c, M) takes into account all the even faces that are resonant for
M and not only the number of resonant hexagons. Let us introduce an algorithmic problem
related to those notions.

Open Problem 3.1. #Clar : Computing the Clar Number of Planar Graphs

• Input: (G, c), where G is a planar graph and c is a planar representation of c.

• Problem: Compute Clar (G, c) .

We have the following important result [3].

Theorem 3.2. The problem #Clar is NP-hard.

The above result seems to be discouraging. However, we are not interested in solving the
problem #Clar in its full generality, we are interested in its restriction to the class of fullerene
graphs.

Notation 3.3. Let C be a class of planar graphs, we use the symbol #Clar [C] to denote the restriction
of the problem #Clar to the set of instances constituted by the elements of C. We use the symbol F
to denote the class of fullerene graphs, and the symbol 2B to denote the class of 2-connected planar
bipartite graphs.

It is natural to ask: What is known about restrictions of #Clar? We have an important
result that was proved by Abeledo and Atkinson [1]

Theorem 3.4. The problem #Clar [2B] can be solved in polynomial time.

A 2-connected planar graph is bipartite, if and only if, all its faces have even size. Thus,
we have that hexagonal systems are bipartite, and it implies that one can efficiently compute
the Clar number of benzenoids and other hexagonal carbon molecules. On the other hand
we have that fullerene graphs are not bipartite because of their pentagonal faces. If one
checks the NP-hardness proof provided by Berczi-Kovacs and Bernath [3], he will observe
that the hard instances constructed in the proof are planar graphs containing a large number
of odd faces. One can use Euler’s formula to prove that any fullerene has exactly 12 pentagons.
This is The 12-pentagon Theorem [8]. We observe that those 12 pentagonal faces are the only
remaining obstacles: The problem #Clar [F ] is only 12 faces apart from proved tractability
(bipartiteness). Thus, we think that it is a good idea to classify fullerene according to the type
of clusters that are formed by those pentagons.
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3.1 Signatures of fullerene graphs

Let G be a fullerene. A pentagonal-cluster is a group of pentagonal faces whose union gives
place to a connected subgraph of G and such that any other pentagonal face is node-disjoint
from the faces in the cluster. The size of a cluster is the number of its faces.

Definition 2. A fullerene signature is a tuple of positive integers (n1, ...,nk), such that n1 ≥
· · · ≥ nk ≥ 1 and such that the equality ni = 12 holds.

If (n1, ...,nk) is the signature of G, we have that the pentagonal faces of G are organized
into k pentagonal-clusters, which are pairwise node-disjoint, and such that the size of the ith

cluster is equal to ni. Observe that the notion of signature corresponds to a classification of
fullerenes. Given a signature η it defines the class

Fη = {F ∈ F : the signature of F is equal to η} .

We have for instance that the signature of the Buckminsterfullerene C60 (see [14]) is equal to

(1,1,1,1,1,1,1,1,1,1,1,1) .

We can use signatures to define important subclasses of F .

Definition 3. A fullerene N is a nanotube, if and only if, its signature is equal to (6,6). We
use the symbol N to denote the class of all nanotubes. We say that a fullerene F is even, if
and only if, all the entries of its signature are even integers. We use the symbol E to denote
the class of even fullerenes.

It is important to remark that the class N is constituted by molecular graphs of carbon nan-
otubes. Carbon nanotubes are cylindrical carbon molecules with unusual properties which
are valuable for nanotechnology, electronics, optics and other fields of materials science and
technology [5]. The stability properties of carbon nanotubes are important in the technologi-
cal applications of those molecules. Thus, it seems that the restriction #Clar [N ] is an impor-
tant algorithmic problem related to mathematical nanosciences. We prove that the problems
#Clar [N ] and #Clar [E ] can be solved in polynomial time (see below). We also show that
#Clar [F ]is fpt-tractable (see [7]).

Remark 2. Some other authors define nanotubes (nanocones) in a different way. Ghorbani and
Naserpour computed closed formulae for the Clar number of two special classes of fullerenes
that are different to the class N introduced above [9]. We use the notion of nanotube intro-
duced in [11], and which is related to the notion of 5-cyclic edge cut: The class N is the set
constituted by all the fullerenes admitting a 5-cyclic edge cut. It is important to remark that
all those different classes of nanotubes are constituted by fullerenes of even signatures (see
below).
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3.2 Computing the Clar number of bipartite graphs

Suppose that we are given a planar graph G together with a planar representation (em-
bedding) of it. We use the symbol c to denote the planar embedding. Let E be the set of
edges of G, let V be the set of nodes and let F be the set of even faces determined by c. The
problem of computing the Clar number of G can be formulated as a node set partitioning
problem, where each node of G must be covered exactly once by either an edge or by the
cycle boundary of one of the faces in F . The key observation is that each proper partition of
V , say the partition P = (V (E) ,V (F)) , gives place to a family of perfect matchings that we
denote with the symbol MP. The family MP can be obtained in the following way:

1. Identify the faces of (G, c) used to cover the nodes in V (F) with a Clar set for the perfect
matchings in MP. The later set of faces, that we denote with the symbol FP, is fully
described by the following condition: f ∈ FP, if and only if, exactly a half of the nodes
of f belong to V (F) .

2. Identify the edges that are used to cover the nodes in V (E) with the remaining edges
included in those perfect matchings. We use the symbol EP to denote the later set, the
set EP is fully described by the condition: e ∈ EP, if and only if, the end-nodes of e
belong to V (E) .

The objective is to maximize the number of faces in the partition. This approach is repre-
sented by the following integer program

IP-Clar (G, c) = max
{〈

1|F |,y
〉

: y ∈ Z
|F |
+ , x ∈ Z|E |

+ and (KG) x + (RG,c)y = 1|V|
}

,

where the symbol KG denotes the node-edge incidence matrix of G, the symbol RG,c de-
notes the node-face incidence matrix determined by the pair (G, c) and the symbol 1|F | de-
notes the all ones vector of dimension |F | (the vector 1|V| is defined accordingly).

The above representation of #Clar as an integer programming problem has been used be-
fore to study this hard optimization problem [1], other integer programming representations
have been studied as well (see [2]). However, those representations does not yield an efficient
solution of #Clar, recall that integer programming is NP-hard.

It is important to recall, at this point, that some integer programs are equivalent to their
linear relaxations. We use the term easy programs to designate the latter type of integer
programs. Notice that easy programs can be efficiently solved using linear programming.
It means that we can use linear programming to compute the Clar number of any planar
graph whose corresponding integer program IP-Clar (G, c) is an easy program. We have
to ask: Which are the linear programs that are easy? It is known that an integer program
( f , A · X ≥ b) is easy, if and only if, the constraint matrix A is unimodular [1]. Recall that a
rectangular matrix A is unimodular, if and only if, the determinants of all its maximal order
submatrices are equal to ±1. Abeledo and Atkinson proved that given a planar bipartite and
2-connected graph G the matrix [KGRG,c] is unimodular [1], here the symbol [KGRG,c] stands
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for the concatenation of the matrices KG and RG,c. It follows from the later result that given
a planar bipartite and 2-connected graph G, the integer program IP-Clar (G, c) is easy. It fol-
lows that problem #Clar [2B] can be solved in polynomial time. We will try to extend the
Theorem 3.4 (and the underlying approach) as much as possible.

Let (G, c) be a pair constituted by a planar graph and a planar representation of it, let V0

be a set of nodes, let E0 be a set of edges, and let F0 be a set of faces. A matching of G satisfies
the triple [V0, E0, F0], if and only if, the following three conditions are satisfied:

1. All the nodes in V (G)\V0 are covered by M, and the nodes in V0 are not incident with
M.

2. For all e ∈ E0, the edge e does not belong to M.

3. For all f ∈ F0, the face f is not a resonant face for M.

Given a matching M satisfying the triple [V0, E0, F0], we define

Clar∗ ((G, c) , [V0, E0, F0] , M) = max{|A| : A is a set of resonant faces for M} .

The [V0, E0, F0]-Clar number of (G, c) is equal to

max{Clar∗ ((G, c) , [V0, E0, F0] , M) : M satisfies the triple [V0, E0, F0]} .

We consider a variation of the problem #Clar, that we call Clar number with prescribed
triples. We use the symbol #ClarPT to denote the latter problem, which is the problem defined
by:

• Input: ((G, c) , [V0, E0, F0]), where G is a planar 2-connected and bipartite graph, c is a planar
representation of G and [V0, E0, F0] is a triple.

• Problem: Compute the [V0, E0, F0]-Clar number of (G, c) .

First at all we prove that #ClarPT can be solved in polynomial time, then we use this
result to design a polynomial time algorithm computing the Clar number of any fullerene
whose signature is an even signature.

Proposition 3.5. The problem #ClarPT [2B] can be solved in polynomial time.

Proof. Let ((G, c) , [E0, F0]) be an input of #ClarPT [2B], and let [KR] be the concatenation of
the node-edge incidence matrix of G (the matrix K) and the node-face incidence matrix of
(G, c) (the matrix R). The key observation is that the [V0, E0, F0]-Clar number of (G, c) is equal
to

max
{〈

1|F |−|F0|,y
〉

: y ∈ Z
|F |−|F0|
+ , x ∈ Z|E |−|E0|

+ and K[E0]x + R[F0]y = ØV0

}
,
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where K[E0] is the matrix that is obtained from K by deleting all the columns correspond-
ing to edges in E0, R[F0] is the matrix that is obtained from R by deleting all the columns
corresponding to faces in F0 and ØV0 is the characteristic vector of the set V (G)\V0, that is:

ØV0 [v] =
{

1, if v /∈ V0

0, otherwise
.

We observe that the constraint matrix
[
K[E0]R[F0]

]
is obtained from the unimodular matrix

[KR] by deleting some columns. It follows that
[
K[E0]R[F0]

]
is unimodular, and it implies that

the problem #ClarFP can be solved in polynomial time using linear programming methods.
Then, there exists some positive integer d such that the [V0, E0, F0]-Clar number of (G, c) can
be computed in time O

(
|G|d

)
.

4 Computing the Clar number of nanotubes and fullerenes of even signatures

We want to use Proposition 3.5 to compute the Clar number of some planar graphs that
are not bipartite. We begin considering the class N constituted by all the nanotubes.

Recall that N is the class of fullerene graphs whose signature is equal to (6,6) . This means
that the twelve pentagonal faces of a nanotube are grouped together into two pentagon-
clusters of size 6 that are called pentacaps. The graphic below corresponds to a planar repre-
sentation of a nanotube that we denote with the symbol N4.

Figure 1. The nanotube N4.

All nanotubes are similar. Given a nanotube N, it contains only two pentagonal clusters,
and each one of those two clusters is constituted by six pentagons that are grouped together
in the same way. Moreover, the two pentacaps of nanotube N are connected by a layered
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graph constituted by a finite number of bracelets, each one constituted by five hexagons (see
the Figure above). We have that the class of all nanotubes is equal to the set {Ni : i ≥ 0},
where for all i ≥ 0 the symbol Ni denotes the nanotube that contains exactly i bracelets.

Let i ≥ 0, notice that the boundaries of the two pentacaps of Ni are cycles of length 10.
Suppose that we delete the edges and the nodes that are enclosed by any one of those two
cycles. Notice that we get a 2-coonected planar graph N̂i such that all its faces are even faces.
Thus, we have that N̂i is a 2-connected planar and bipartite graph. The graphic below is a
planar representation of N̂4.

Figure 2. The graph N̂4 obtained from N4.

We can compute the Clar number of N̂i in polynomial time in i. Can we use this fact to
efficiently compute the Clar number of Ni?

Notation 4.1. Let us use the symbol ECG (i) to denote the set of edges of Ni that were deleted in the
construction of N̂i, that is: The symbol ECG (i) denote the set constituted by the twenty edges of Ni
that are enclosed by the boundary of one of the two pentacaps. Let us use the symbol VCG (i) to denote
the set of nodes the were deleted in the construction of N̂i.

Suppose that we are given a set A ⊂ ECG (i) , and suppose that we want to compute the
quantity

Clar (Ni, A) = max{Clar (Ni, M) : M is a perfect matching and A ⊂ M} .

Let e ∈ A, and suppose that e is incident with a node v that belongs to N̂i . The two edges
of N̂i that are incident with v become forbidden edges for all the matchings extending the set
A. Observe that the face of N̂i that contains the node v becomes a forbidden face as well. Set

V (A) =
{

v ∈ V
(

N̂i

)
: v is incident with A

}
,
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Figure 3. Green nodes are the nodes deleted from N4 to build N̂4. Red edges are the edges deleted
from N4 to built N̂4. Red bold edges are the edges chosen to cover the green nodes. Blue edges are
the forbidden edges determined by the bold edges, while bold faces are the forbidden faces
determined by the bold edges.

the set V (A) determines a forbidden pair [EA, FA] (see the Figure 3 below).

We observe that Clar (Ni, A) is equal to

max
{〈

1|F |−|FA|,y
〉

: y ∈ Z
|F |−|FA|
+ , x ∈ Z|E |−|EA|

+ and K[E0]x + R[F0]y = ØV(A)

}
,

where ØV(A) is the characteristic vector of the set V
(

N̂i

)
\V (A) . Thus, we get that Clar (Ni, A)

is equal to the [V (A) , EA, FA]-Clar number of the bipartite graph N̂i. Recall that we can ef-
ficiently compute the later quantity. We use this fact to design a polynomial time algorithm
computing the Clar number of nanotubes. We use the symbol A1 to denote this algorithm.

Remark 3. Recall that all the fullerene graphs are 3-connected, and recall that all the planar
representations of a 3-connected planar graph are equivalent. Thus, the input of algorithm
A1 can be a positive integer i encoding the nanotube Ni. Observe that Ni has exactly 10i + 20
nodes.

Definition 4. We have that a matching M belongs to M (Ni), if and only if, the following two
conditions are satisfied:

1. M ⊂ ECG (i) .

2. The matching M covers the set VCG (i) .

Notice that for all i the size of M (Ni) is bounded above by 220.
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algorithm 4.2. Procedure A1 works, on input i, as follows:

1. List the subsets of M (Ni) .

2. Let A1, ..., AKi be the list computed in step 1. For all j ≤ Ki ≤ 220 do:

(a) Compute the triple
[
V
(

Aj
)

, EAj , FAj

]
.

(b) Run, on input
((

N̂i

)
,
[
V
(

Aj
)

, EAj , FAj

])
, the algorithm in the proof of proposition 3.5.

Use the variable Xj to store this value.

3. Compute X = max
{

Xj : j ≤ Ki
}

. Print X.

The execution of steps 1 and 3 require time O (1) . Then, the running time of A1 is es-
sentially equal to the running time employed in the second step. The later running time is
O
(
(10i + 20)20

)
. Therefore, we can conclude that A1 is a polynomial time algorithm com-

puting the Clar number of nanotubes.
To finish with this section we only have to observe that the boundary of any even cluster

is a cycle of even length. We get that the above algorithm can be straightforwardly extended
to deal with fullerenes of even signatures. Thus, we have two polynomial time algorithms
denoted A1 and A2, the first one solves the problem #Clar [N ] while the second one solves
the problem #Clar [E ] .

5 The Clar number for odd signatures

We begin this section by observing that there exists a naive polynomial time algorithm
that approximates the Clar number of any fullerene within the ratio 11.

Lemma 5.1. There exists a polynomial time algorithm that approximates the Clar number of any
fullerene graph within the ratio 11.

Proof. The approximation algorithm, denoted by approx-CF, is the following one:

Algorithm approx-CF works, on input F, as follows:

1. Check if the signature of F is odd, in given case print
⌈n−380

61

⌉
, (here n stands for the size of F).

Otherwise go to step 3.

2. Run, on input F, the algorithm A2.
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We observe that if the signature of F is even the algorithm approx-CF computes the exact
value of Clar (F). Now suppose that the signature of F is odd, in this case the algorithm
prints the value

⌈n−380
61

⌉
. We claim that

⌈n−380
61

⌉
approximates the quantity Clar (F) within

the ratio 11. First we observe that F cannot be a nanotube. Then, we have that Clar (F)
is lowerbounded by n−380

61 (see [11]). If we suppose that n is large, we get that Clar (F) ≥
n−380

61 ≥ n
62 . On the other hand we have that Clar (F) ≤ n−12

6 (see [16]). Notice that

11
⌈

n − 380
61

⌉
≥ 11

( n
62

)
≥ n

6
≥ Clar (F) ≥

⌈
n − 380

61

⌉
.

Thus, we have that
⌈n−380

61

⌉
approximates the quantity Clar (F) within the ratio 11.

We get from the above result the following conclusion: The real challenge, when coping
with fullerenes of odd signatures, is to compute the Clar number exactly.

We wont exhibit a polynomial time algorithm computing the Clar number of general
fullerene graphs. Actually, we do not know is such an algorithm exists. We will only ob-
serve that algorithm A2 can be turned into a fixed parameter tractable algorithm A3 solving the
problem #Clar [F ] (see [7] for a pedagogical introduction to the basics of fixed parameter
algorithms). Algorithm A3 is based on an easy observation and a naive idea:

• The observation is that given a fullerene G, the number of its odd clusters is an even
integer.

• The naive idea is the following one: Given G, the odd clusters of G can be grouped in
pairs. Then, given one of those pairs, one can merge the corresponding two clusters and
some of the faces in between to define a large face whose boundary is an even cycle. If
one does the same for all the pairs of clusters, he gets a bipartite graph Ĝ that can be
used to compute the Clar number of G. Graph Ĝ plays the role of the graph N̂ that is
used to compute the Clar number of a nanotube N.

Let F be a fullerene with n nodes. There exist positive constants C and d such that the
running time of A3, on input F, is bounded above by the function 2C·k(F)nd. Here, the symbol
k (F) denotes a parameter related to F and which measures the distance between its odd
clusters (see [3]). If F is an even fullerene the parameter k (F) takes the value 0, and we get
that the running time of A3, on input F, is bounded above by nc. If the odd clusters of F
are close to each other the parameter k (F) gets a small value and the computation of A3, on
input F, is still a feasible computation. However, the same cannot be said if the odd clusters
of F are far away from each other (see [3] for more details related to this issue). Algorithm
A3 does not work well for fullerene graphs containing an odd cluster that is far away from
the remaining odd clusters. We have to conclude that there are some remaining problems
related to the computation of Clar numbers of fullerenes.
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[6] L. Esperet, F. Kardoš, A. King, D. Král, Daniel, S. Norine, Exponentially many perfect matchings

in cubic graphs, Adv. Math. 227(4) (2012) 1646-1664.
[7] J. Flum , M. Grohe, Parameterized Complexity Theory, Springer Verlag, Heidelberg, 2006.
[8] P. Fowler, D. Manolopoulos, An Atlas of Fullerenes, Dover, NewYork, 2007.
[9] M. Ghorbani, E. Naserpour, The Clar Number of Fullerene C24n and Carbon Nanocone CNC44[n],

Iran. J. Math. Chem. 2(1) (2011) 53-59.
[10] M. Jalali-Rad, Which fullerenes are stable?, J. math. nonosci. 5 (2015) 23-29.
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