
Journal of Discrete Mathematics and Its Applications 7 (3) (2022) 141–146

Journal of Discrete Mathematics and Its Applications

Available Online at: http://jdma.sru.ac.ir

On dominaton type invariants of regular dendrimer
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1 Introduction

Let G = (V, E) be a simple connected graph whose vertex set V and the edge set E. For
the open neighborhood of a vertex v in a graph G, the notation NG(v) is used as NG(v) =
{u|(u,v) ∈ E(G)} and the closed neighborhood of v is used as NG[v] = NG(v) ∪ {v}. For a
set S ⊆ V, the open neighborhood of S is N(S) =

⋃
v∈S N(v) and the closed neighborhood of

S is N[S] = N(S) ∪ S.
A subset S ⊆ V is a dominating set, if every vertex in G either is element of S or is adjacent

to at least one vertex in S. The domination number of a graph G is denoted with γ(G) and
it is equal to the minimum cardinality of a dominating set in G. Fundamental notions of
domination theory are outlined in the book [1].

A vertex v ve-dominates an edge e which is incident to v, as well as every edge adjacent
to e. A set S ⊆ V is a ve-dominating set if every edges of a graph G are ve-dominated by at

*Corresponding author (Email address: bsahin@bayburt.edu.tr)
Received 1 September 2022; Revised 7 September 2022; Accepted 17 September 2022
First Publish Date: 1 October 2022

©Shahid Rajaee Teacher Training University141

http://jdma.sru.ac.ir
mailto: bsahin@bayburt.edu.tr
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least one vertex of S [2, 5]. The minimum cardinality of a ve-dominating set is named with
ve-domination number and denoted with γve(G).

An edge e ev-dominates a vertex v which is a vertex of e, as well as every vertex adjacent
to v [2, 5]. A subset D ⊆ E is a edge-vertex dominating set (in simply, ev-dominating set) of
G, if every vertex of a graph G are ev-dominated by at least one edge of D. The minimum
cardinality of a ev-dominating set is named with ev-domination number and denoted with
γev(G).

We attain three domination type invariants for regular dendrimers.

Figure 1. Dendrimers T2,4 and T3,4.

Dendrimers are highly branched trees [4]. A regular dendrimer Tk,d is a tree with a central
vertex v. Every non-pendant vertex of Tk,d is of degree d ≥ 2 and the radius is k, distance
from v to each pendant vertex. Dendrimers T2,4 and T3,4 are demonstrated in Figure 1. Some
properties of regular dendrimers are denoted in the following lemma [3].

Lemma 1.1. If Tk,d is a tree with central vertex v, then

i) The order of Tk,d is 1 +
d[(d − 1)k − 1]

d − 2
.

ii) Tk,d has d branches.

iii) Each branch of Tk,d has
(d − 1)k − 1

d − 2
vertices.

iv) Each branch of Tk,d has (d − 1)k−1 pendant vertices.

v) Each branch of Tk,d has
(d − 1)k−1 − 1

d − 2
nonpendant vertices.

vi) The number of vertices on radius k is d(d − 1)k−1.
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2 Main results

We remind some well known properties of paths and cycles in the next lemma.

Lemma 2.1. Let Pn path and Cn cycle with n vertices [5],

i) γ(Pn) = γ(Cn) = ⌈n
3 ⌉.

ii) γve(Pn) = γev(Pn) = ⌊n+2
4 ⌋.

iii) γve(Cn) = γev(Cn) = ⌊n+3
4 ⌋.

Theorem 2.2. If Tk,d be a regular dendrimer, then

γ(Tk,d) =


1 +

(d − 1)k − d + 1
d − 2

, k is odd

(d − 1)k − 1
d − 2

, k is even
.

Proof. Let k is odd. In this case minimum cardinality dominating set of Tk,d is consisted of
central vertex v, vertices on radius k = 2,4, . . . ,k − 1. Summation of all vertices is by Lemma
1.1 (vi)

γ(Tk,d) = 1 + d(d − 1) + d(d − 1)3 + · · ·+ d(d − 1)k−2,

γ(Tk,d) = 1 + d(d − 1)
[
1 + (d − 1)2 + · · ·+ (d − 1)k−3

]
.

The second term of this equation is a geometric series such that r = (d − 1)2. So,

γ(Tk,d) = 1 + d(d − 1)
r

k−3
2 +1 − 1
r − 1

,

γ(Tk,d) = 1 + d(d − 1)
r

k−1
2 − 1
r − 1

,

γ(Tk,d) = 1 + d(d − 1)
(d − 1)k−1 − 1
(d − 1)2 − 1

,

γ(Tk,d) = 1 +
(d − 1)k − d + 1

d − 2
.

Now let k is even. In this case minimum dominating set of Tk,d is consisted of vertices on
radius k = 1,3, . . . ,k − 1. Therefore,

γ(Tk,d) = d + d(d − 1)2 + d(d − 1)4 + · · ·+ d(d − 1)k−2,

γ(Tk,d) = d
[
1 + (d − 1)2 + (d − 1)4 + · · ·+ (d − 1)k−2

]
.
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Şahin et al. / Journal of Discrete Mathematics and Its Applications 7 (2022) 141–146

This equation is a geometric series such that r = (d − 1)2 and then,

γ(Tk,d) = d
r

k−2
2 +1 − 1
r − 1

,

γ(Tk,d) = d
r

k
2 − 1
r − 1

,

γ(Tk,d) = d
(d − 1)k − 1
(d − 1)2 − 1

,

γ(Tk,d) =
(d − 1)k − 1

d − 2
.

Theorem 2.3. If Tk,d be a regular dendrimer, then

γve(Tk,d) =


1 +

(d − 1)k−1 − d + 1
d − 2

, k is even

(d − 1)k−1 − 1
d − 2

, k is odd
.

Proof. A vertex v ve-dominates an edge e which is incident to v, as well as every edge adjacent
to e. This means a vertex ve-domianates every edge exist in maximum distance 2 from it. By
this way we assume that k is even. In this case minimum ve-dominating set of Tk,d is consisted
of central vertex v, vertices on radius k = 2,4, . . . ,k − 2. Thus,

γve(Tk,d) = 1 + d(d − 1) + d(d − 1)3 + · · ·+ d(d − 1)k−3,

γve(Tk,d) = 1 + d(d − 1)
[
1 + (d − 1)2 + · · ·+ (d − 1)k−4

]
.

The second term of this equation is a geometric series such that r = (d − 1)2. So,

γ(Tk,d) = 1 + d(d − 1)
r

k−4
2 +1 − 1
r − 1

,

γ(Tk,d) = 1 + d(d − 1)
r

k−2
2 − 1
r − 1

,

γ(Tk,d) = 1 + d(d − 1)
(d − 1)k−2 − 1
(d − 1)2 − 1

,

γ(Tk,d) = 1 +
(d − 1)k−1 − d + 1

d − 2
.

Now let k is odd. In this case ve-dominating set of Tk,d is consisted of vertices on radius
k = 1,3, . . . ,k − 2. Therefore,

γve(Tk,d) = d + d(d − 1)2 + d(d − 1)4 + · · ·+ d(d − 1)k−3,
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γve(Tk,d) = d
[
1 + (d − 1)2 + (d − 1)4 + · · ·+ (d − 1)k−3

]
.

This equation is a geometric series such that r = (d − 1)2 and then,

γve(Tk,d) = d
r

k−3
2 +1 − 1
r − 1

,

γve(Tk,d) = d
r

k−1
2 − 1
r − 1

,

γve(Tk,d) = d
(d − 1)k−1 − 1
(d − 1)2 − 1

,

γve(Tk,d) =
(d − 1)k−1 − 1

d − 2
.

Theorem 2.4. If Tk,d be a regular dendrimer, then

γve(Tk,d) = γev(Tk,d).

Proof. We investigate T1,d firstly. The minimum cardinality ev-dominating set of T1,d is con-
sisted of one of three edges which is incident the central vertex v. If we take k = 3 the min-
imum cardinality ev-dominating set of T3,d is consisted of edges lying between k = 1 and
k = 2. The number of these edges are equal to the pendant vertices of T2,d. If we continue
like this,ev-domination number of Tk,d is equal to the ve-domination number of Tk,d when k
is odd.

For the T2,d the minimum cardinality ev-dominating set of T2,d is consisted three edges
incident the central vertex v. For the T4,d the minimum cardinality ev-dominating set is con-
sisted of edges which are incident the v and the edges lying between k = 2 and k = 3. Number
of the second type vertices is equal to the number of pendant vertices of T3,d. If we continue
like this, ev-domination number of Tk,d is equal to the ve-domination number of Tk,d when k
even.
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