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Abstract 

The solution to the problem of an orthotropic long cylinder subjected to 

torsional loading is first obtained by means of separation valuables. The 

cylinder is twisted by two lateral shear tractions, and the ends of the cylinder 

surface of the cylinder are stress-free. First, the domain under consideration 

is weakened by an axisymmetric rotational Somigliana ring dislocation. The 

dislocation solution is employed to derive a set of Cauchy singular integral 

equations for the analysis of multiple axisymmetric planner cracks. The 

numerical solution to these integral equations is used to determine the stress 

intensity factors for the tips of the concentric planar cracks. A preliminary 

comparison between results of this study and those available in the literature 

is performed to confirm the validity of the proposed technique. Several 

examples of multiple concentric planner cracks are solved and graphically 

displayed. Furthermore, the configuration of the cracks and the interaction 

between cracks is studied. 
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1. Introduction

Shafts in a machine are bars to hold or turn other 

parts that move or spin. Due to the simplicity of 

manufacturing, they are generally produced in 

the form of the bars with a circular cross-section. 

Shafts are often subjected to torsion in the 

process of working; therefore, cracking is one of 

their major issues. Some papers that analytically 

deal with the circular bars with no defects are as 

follows: 

The torsion problem of two dissimilar half-

spaces made of homogeneous materials and 

bonded through a thin layer of functionally 

graded material (FGM) interfacial region, was 

treated by Ozturk and Erdogan [1]. There was an 

axisymmetric penny-shaped crack in the 

interface between the lower half-space and the 

FGM thin layer. A problem similar to the above-

mentioned paper was re-examined by Xuyue et 

al. [2], which the penny-shaped crack was inside 

the interfacial FGM layer. The problem was also 

solved by the method similar to that of used in 

Ref. [1]. 

Study of the way in which bi-materials are 

constructed makes it possible to introduce a very 

thin layer of an FGM between two distinctly 

different materials. Xuyue et al. [3] treated the 

problem of a penny-shaped crack in such an 

interfacial zone, along with the thickness of 
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which the elastic modulus is varied in the power 

form of a linear function of thickness variable.  

Danyluk and Singh [4] investigated the problem 

of an infinite solid containing a flat annular crack 

subjected to an axial torsion. Using Hankel 

transform, the solution of the problem was 

reduced to triple-integral equations containing 

Bessel functions of order 1 wherein the 

equations were written for the surface of the 

crack beside the inner and the outer regions of it. 

The problem of axially symmetric torsion for 

two bonded dissimilar FGM elastic layers with 

an interfacial penny-shaped crack was the 

subject of a study done by Saxena et al. [5]. A 

multilayered laminated composite with an 

interfacial penny-shaped crack under a 

symmetric torsion around the axis normal to 

interface was the subject of the study by Hemed 

and Dhaliwal [6]. Fildis and Yahsi [7] 

investigated the axisymmetric problem of two 

homogeneous half-spaces bonded to each other 

through a non-homogeneous interfacial region 

with a penny-shaped crack. By the use of the 

Hankel transform, the problem was reduced to a 

singular integral equation. The numerical 

solution of the singular integral equation yielded 

the corresponding stress intensity factor of the 

crack tip. The problem of a bi-material infinite 

domain subjected to torsional loading weakened 

by a Mode III interfacial cylindrical crack was 

treated by Demir and Khraishi [8].  

As a relatively different problem of those 

reviewed in the above paragraphs, the interaction 

between a spherical inclusion and a penny-

shaped crack located on an infinite elastic body 

was studied by Godin [9]. Chang [10] used the 

Hankel transform and the Fourier series to 

analyze the torsion problem of a finite cylinder 

containing a concentric penny-shaped crack. 

Finally, the numerical results of the stress 

intensity factor of the crack tip were given. 

Zhang [11] re-examined the above-mentioned 

problem for a finite orthotropic cylinder with a 

concentric penny-shaped crack.  

Torsion problem of a concentric penny-shaped 

crack off the middle plane of a finite isotropic 

cylinder was treated by Zhang and Zhang [12]. 

Using a similar technique of solution, the above 

problem was retreated by Zhang [13] for a 

concentric penny-shaped crack away from the 

middle plane of a finite orthotropic cylinder. By 

applying the Hankel transform and the Fourier 

series, the problem of an FGM finite cylinder 

with a concentric penny-shaped crack was 

studied by Liang and Zhang [14].  

A problem of a penny-shaped or an annular crack 

in an FGM infinite cylinder subjected to 

torsional loading was solved by Xue-Li and Duo 

[15]. Akiyama et al. [16] solved the torsion 

problem of an infinite cylinder with two or an 

infinite number of concentric parallel penny-

shaped cracks. The cracks were spaced apart in 

equal distances of each other. At the end step, the 

stress intensity factors of the crack tips were 

calculated. Malits [17] studied the torsion 

problem of a finite elastic cylinder with a 

circumferential edge crack. Using the exact 

asymptotic expansions of the solution of this 

equation, the stress intensity factor, as well as the 

torque, was derived for the case of a shallow 

crack. 

To the best of authors' knowledge, the study 

presented in this article is a new attempt to 

analyze an orthotropic long cylinder with all 

kinds of arbitrary located axisymmetric cracks. 

It should be mentioned that Mode III is 

considered in this paper because of net torsion 

(see [2, 3, 11-14, 18-22]). In this paper, the 

classical theory of elasticity for fracture analysis 

of an orthotropic long cylinder containing a 

rotational Somigliana ring dislocation is first 

presented (Section 2). Next, the stress field of an 

intact long cylinder plane under torsional 

loading is studied (Section 3). Methodologically, 

Buckner’s principle can be used to study a long 

cylinder containing a set of coaxial 

axisymmetric cracks using results of Sections 2 

and 3. This approach is presented in Section 4. 

Namely, a distributed dislocation method is 

employed to achieve a set of integral equations 

of Cauchy singular type. Subsequently, a set of 

relationships for the calculation of stress 

intensity factors are presented in terms of 

dislocation density. Finally, a method for solving 

the ensuing integral equations is recommended 

following the work of Faal et al. [23], where the 

solution of Erdogan et al.  [24] is generalized so 

that both embedded and circumferential edge 

cracks can be taken into account simultaneously. 

Numerical examples will graphically be 
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displayed to demonstrate the effectiveness of the 

proposed solutions, as well as to understand the 

effect of position, geometry and also interaction 

between the cracks on the stress intensity factors 

at crack tips (Section 5). Finally, Section 6 offers 

concluding remarks. 

2. Problem formulation

The only non-zero displacement component 

𝑢𝜃(𝑟, 𝑧) which is independent of the angle 𝜃 is

considered. Only the two nontrivial stress 

components prevail in this problem as follows 

[25]: 

𝜏𝑟𝜃 = 𝐺𝑟𝜃(
𝜕𝑢𝜃
𝜕𝑟

−
𝑢𝜃
𝑟
) 

𝜏𝜃𝑧 = 𝐺𝜃𝑧
𝜕𝑢𝜃
𝜕𝑧

(1) 

where 𝐺𝑟𝜃, 𝐺𝜃𝑧 are the orthotropic shear moduli

of the cylinder. Substituting the expressions of 

Eq. (1) into the equilibrium equation 
𝜕𝜏𝑟𝜃

𝜕𝑟
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+
2

𝑟
𝜏𝑟𝜃 = 0, in the absence of body forces,

leads to: 

𝜕2𝑢𝜃
𝜕𝑟2

+
1

𝑟

𝜕𝑢𝜃
𝜕𝑟

+ 𝐺2
𝜕2𝑢𝜃
𝜕𝑧2

−
𝑢𝜃
𝑟2
= 0 

 (2) 

where 𝐺2 = 𝐺𝜃𝑧/𝐺𝑟𝜃. We consider an infinite

cylinder with radius 𝑅, Fig. 1. The curved 

surface of the cylinder is kept stress-free.  

Fig. 1. Schematic view of an infinite cylinder with a 

rotational Somigliana ring dislocation. 

A rotational Somigliana ring dislocation is 

located at 𝑟 = 𝑎, 𝑧 = 0 in the infinite cylinder 

under consideration, in which the radial cut of 

the dislocation is a circle (𝑟 ≤ 𝑎). Because of the 

anti-symmetry of this torsion problem, the 

displacement components in the radial and axial 

directions are vanished throughout the intact 

cylinder. 

The only non-zero displacement component 

𝑢𝜃(𝑟, 𝑧) which is independent of the angle 𝜃 is

considered. The boundary condition along the 

curved surface reads as: 

𝜏𝑟𝜃(𝑅, 𝑧) = 0 (3) 

The condition representing a rotational 

Somigliana ring dislocation located at 𝑟 = 𝑎, 

𝑧 = 0 in an long cylinder with the cut of 

dislocation in radial direction is: 

𝑢𝜃(𝑟, 0
+) − 𝑢𝜃(𝑟, 0

−)

=
𝑏𝜃𝑎

𝑟
𝐻(𝑟 − 𝑎) 

(4) 

where, 𝑏𝜃𝑎/𝑟 designates the magnitude of the

dislocation Burgers vectors and 𝐻(. ) is the 

Heaviside step-function. Generally, the relative 

displacement of the dislocation cut edges is 

considered to be constant. Here for simplicity of 

the solution, a cut with a variable relative 

displacement of its edges is defined. Moreover, 

the continuity of the traction vector on the cut of 

the dislocation requires that: 

𝜏𝜃𝑧(𝑟, 0
+) = 𝜏𝜃𝑧(𝑟, 0

−) (5) 

For a rotational Somigliana ring dislocation, the 

problem is antisymmetric with respect to the 

plane 𝑧 = 0. For the antisymmetric problem, the 

half-space 𝑧 > 0 is subjected to the following 

boundary condition: 

𝑢𝜃(𝑟, 0
+) =

𝑏𝜃𝑎

2𝑟
𝐻(𝑟 − 𝑎) 

(6) 

Using the technique of separation of variables, 

for 𝑧 > 0 a solution to Eq. (2) is proposed as: 

𝑢𝜃(𝑟, 𝑧)

= ∫ 𝐴(𝜉)𝐼1(𝐺𝜉𝑟)𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉
∞

0

+∫ 𝐵(𝜂)𝑒−𝜂𝑧𝐽1(𝐺𝜂𝑟)𝑑𝜂
∞

0

(7)
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where 𝐴(𝜉) and 𝐵(𝜂) are unknown coefficients 

which must be determined using the boundary 

conditions (12) and (15). Also 𝐽1(. ) and 𝐼1(. ) are

the Bessel function and the modified Bessel 

function of first kind of order 1, respectively. 

Using the constitutive Eqs. (1 and 7), the stress 

components are readily written as: 

𝜏𝑟𝜃(𝑟, 𝑧)

= 𝐺𝑟𝜃𝐺(∫ 𝜉𝐴(𝜉)𝐼2(𝐺𝜉𝑟)𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉
∞

0

−∫ 𝜂𝐵(𝜂)𝑒−𝜂𝑧𝐽2(𝐺𝜂𝑟)𝑑𝜂
∞

0

) 

𝜏𝜃𝑧(𝑟, 𝑧)

= 𝐺𝜃𝑧𝐺(∫ 𝜉𝐴(𝜉)𝐼1(𝐺𝜉𝑟)𝑐𝑜𝑠(𝜉𝑧)𝑑𝜉
∞

0

−∫ 𝜂𝐵(𝜂)𝑒−𝜂𝑧𝐽1(𝐺𝜂𝑟)𝑑𝜂
∞

0

) 

(8) 

Satisfying the boundary condition 𝜏𝑟𝜃(𝑅, 𝑧) = 0
implies that: 

𝐺𝜉𝐴(𝜉)𝐼2(𝐺𝜉𝑅) =
2

𝜋
∫ 𝜂𝐵(𝜂)𝐽2(𝐺𝜂𝑅)
∞

0

(∫ 𝑒−𝜂𝑧𝑠𝑖𝑛(𝜉𝑧)𝑑𝑧
∞

0

)𝑑𝜂 

(9) 

Integrating of above relation with respect to 𝑧, 
results in: 

𝐴(𝜉)

=
2

𝐺𝜋𝐼2(𝐺𝜉𝑅)
∫

𝜂𝐵(𝜂)𝐽2(𝐺𝜂𝑅)

𝜂2 + 𝜉2
𝑑𝜂

∞

0

 
(10) 

Applying the boundary condition (6) to the 

solution (8) yields: 

∫ 𝐵(𝜂)𝐽1(𝐺𝜂𝑟)𝑑𝜂
∞

0

=
𝑏𝜃𝑎

2𝑟
𝐻(𝑟 − 𝑎) 

  (11) 

Making the use of the inverse Hankel transform, 

the solution to the Eq. 11 is readily written as: 

𝐵(𝜂) 

=
𝑏𝜃𝑎

2
𝜂∫ 𝐻(𝜏 − 𝑎)𝐽1(𝐺𝜂𝜏)𝑑𝜏

∞

0

=
𝑏𝜃𝑎

2𝐺
𝐽0(𝐺𝜂𝑎)

  (12) 

By replacing the coefficient 𝐵(𝜂) in Eq. (10) by 
𝑏𝜃𝑎

2𝐺
𝐽0(𝐺𝜂𝑎) it can be approached as [26]:

𝐴(𝜉) =
𝑏𝜃𝑎

𝐺𝜋𝐼2(𝐺𝜉𝑅)
[

2

𝐺2𝑅2𝜉2

−𝐾2(𝐺𝑅𝜉)𝐼0(𝐺𝜏𝜉)]

 (13) 

By substituting the coefficients 𝐵(𝜂) and 𝐴(𝜉) 
form Eqs. (12 and 13) into Eq. (8), the stress 

components for 𝑧 > 0 take the form: 

𝜏𝑟𝜃(𝑟, 𝑧)

=
𝑏𝜃𝑎𝐺𝑟𝜃
𝜋

∫
𝜉𝐼2(𝐺𝜉𝑟)

𝐼2(𝐺𝜉𝑅)
[

2

𝐺2𝑅2𝜉2

∞

0

− 𝐼0(𝐺𝑎𝜉)𝐾2(𝐺𝑅𝜉)]𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉

−
𝑏𝜃𝑎𝐺𝑟𝜃
2

∫ 𝜂𝑒−𝜂𝑧𝐽0(𝜂𝐺𝑎)𝐽2(𝜂𝐺𝑟)𝑑𝜂
∞

0

𝜏𝜃𝑧(𝑟, 𝑧)

=
𝑏𝜃𝑎𝐺𝜃𝑧
𝜋

∫
𝜉𝐼1(𝐺𝜉𝑟)

𝐼2(𝐺𝜉𝑅)
[

2

𝐺2𝑅2𝜉2

∞

0

− 𝐼0(𝑎𝐺𝜉)𝐾2(𝑅𝐺𝜉)]𝑐𝑜𝑠(𝜉𝑧)𝑑𝜉

−
𝑏𝜃𝑎𝐺𝜃𝑧
2

∫ 𝜂𝑒−𝜂𝑧𝐽0(𝜂𝑎𝐺)𝐽1(𝜂𝐺𝑟)𝑑𝜂
∞

0

(14) 

To extend the stress fields for 𝑧 < 0, in the 

second integrals of the above relations 𝑧 is 

replaced by |𝑧|. The second integral of 𝜏𝑟𝜃(𝑟, 𝑧)
is multiplied by 𝑠𝑔𝑛(𝑧) which refers to the sign 

function. Using the Mathematica 10, the stress 

component 𝜏𝜃𝑧(𝑟, 𝑧) at middle plane of the

cylinder i.e. 𝑧 = 0, is simplified as follows: 

𝜏𝜃𝑧(𝑟, 0)

=
𝑏𝜃𝑎𝐺𝜃𝑧
𝜋

∫
𝜉𝐼1(𝐺𝜉𝑟)

𝐼2(𝐺𝜉𝑅)
[

2

𝐺2𝑅2𝜉2

∞

0

− 𝐼0(𝑎𝐺𝜉)𝐾2(𝑅𝐺𝜉)]𝑑𝜉

−
𝑏𝜃𝑎𝐺𝜃𝑧
𝜋𝐺2

{

1 

𝑟2 − 𝑎2
𝑬(
𝑎

𝑟
)   𝑟 > 𝑎

1

𝑎𝑟
(𝑲(

𝑟

𝑎
) +

𝑎2

𝑟2 − 𝑎2
𝑬(
𝑟

𝑎
))      𝑟 < 𝑎

(15) 

where 𝑲(𝑘) = ∫ 𝑑𝑥/√1 − 𝑘2𝑠𝑖𝑛2𝑥
𝜋/2

0
 and

𝑬(𝑘) = ∫ √1 − 𝑘2𝑠𝑖𝑛2𝑥
𝜋/2

0
𝑑𝑥 are the complete

elliptic integrals of the first and second kind, 

respectively. As it can be seen easily, the stress 
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component on the middle plane of the cylinder, 

𝜏𝜃𝑧(𝑟, 0) has Cauchy-type singularity i.e.

𝜏𝜃𝑧(𝑟, 0)~
1

𝑟−𝑎
 𝑎𝑠 𝑟 → 𝑎. This kind of 

singularity was previously reported for an 

infinite domain with  rotational Somigliana ring 

dislocation [27]. 

3. Torsion of an intact infinite cylinder under

lateral shear tractions

An infinite cylinder with height 2ℎ and radius 𝑅, 
Fig. 2, is considered in which the flat surfaces of 

the cylinder, that is, 𝑧 = ±ℎ are stress-free. Also, 

the curved surface of the cylinder is left stress-

free except for regions 𝑑1 < 𝑧 < 𝑑2 and −𝑑2 <
𝑧 < −𝑑1. In these regions the cylinder is under

constant shear tractions 𝜏0 and −𝜏0 which are

applied in the opposite directions. In fact, the 

cylinder is subjected to two identical 

bidirectional torques as      

𝑀0 = 2𝜋𝑅
2𝜏0(𝑑2 − 𝑑1) which are applied near

the two ends of cylinder in the opposite 

directions. Because of the axisymmetry of the 

torsion problem, the displacement components 

in the radial and axial directions vanish 

throughout the intact cylinder.  

Fig. 2. An infinite cylinder under constant 

bidirectional shear tractions. 

The problem is anti-symmetric with respect to 

the middle plane of the cylinder (𝑧 = 0). The 

boundary conditions of the problem are as 

follow: 

𝜏𝜃𝑧(𝑟, ±ℎ) = 0
𝜏𝑟𝜃(𝑅, 𝑧) = 𝜏0[𝐻(𝑧 − 𝑑1)

− 𝐻(𝑧 − 𝑑2)],
𝑑2 > 𝑑1

(16) 

The solution to Eq. (2) may be readily found 

using the separation of variables technique. The 

following solution form is proposed for the 

problem: 

𝑢𝜃(𝑟, 𝑧) = ∫ 𝐴(𝜉)𝐼1(𝐺𝜉𝑟)𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉
∞

0

(17) 

where 𝐵𝑛 is an unknown coefficient and 𝐼1(. ) is
the modified Bessel function of the first kind of 

order 1. By virtue of Eq. (1), the stress 

components read as: 

𝜏𝑟𝜃(𝑟, 𝑧)

= 𝐺𝑟𝜃𝐺∫ 𝜉𝐴(𝜉)𝐼2(𝐺𝜉𝑟)𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉
∞

0

𝜏𝜃𝑧(𝑟, 𝑧)

= 𝐺𝜃𝑧𝐺∫ 𝜉𝐴(𝜉)𝐼1(𝐺𝜉𝑟)𝑐𝑜𝑠(𝜉𝑧)𝑑𝜉
∞

0

(18) 

Using Eq. (1), the second boundary condition of 

(3) is applied as below:

𝜏𝑟𝜃(𝑟, 𝑧)

= 𝐺𝑟𝜃𝐺∫ 𝜉𝐴(𝜉)𝐼2(𝐺𝜉𝑅)𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉
∞

0

= 𝜏0[𝐻(𝑧 − 𝑑1) − 𝐻(𝑧 − 𝑑2)]

(19) 

Taking the inverse Fourier sine transform of the 

above equation leads to: 

𝐴(𝜉) =
2𝜏0

𝜉2𝐼2(𝐺𝜉𝑅)𝜋𝐺𝑟𝜃
(𝑐𝑜𝑠(𝜉𝑑1)

− 𝑐𝑜𝑠(𝜉𝑑2))

(20) 

Finally, the stress field arrives as: 

𝜏𝑟𝜃(𝑟, 𝑧)

=
2𝜏0
𝜋
∫

𝐼2(𝜉𝐺𝑟)

𝜉𝐼2(𝜉𝐺𝑅)
(𝑐𝑜𝑠(𝜉𝑑1)

∞

0

− 𝑐𝑜𝑠(𝜉𝑑2))𝑠𝑖𝑛(𝜉𝑧)𝑑𝜉
𝜏𝜃𝑧(𝑟, 𝑧)

=
2𝜏0
𝜋
∫

𝐼1(𝜉𝐺𝑟)

𝜉𝐼2(𝜉𝐺𝑅)
(𝑐𝑜𝑠(𝜉𝑑1)

∞

0

− 𝑐𝑜𝑠(𝜉𝑑2))𝑐𝑜𝑠(𝜉𝑧)𝑑𝜉

(21)
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4. Axisymmetric crack formulation 
 

Suppose an infinite cylinder is weakened by 𝑁𝑝 

penny-shaped cracks, 𝑁𝑎 annular cracks and 𝑁𝑐 
circumferential edge cracks in which all defects 

located concentrically in the cylinder. The radii 

of the penny-shaped cracks and the inner radii of 

the circumferential edge cracks are: 

𝑐𝑗 , 𝑗 = 1,2, … ,𝑁𝑝 and 𝑑𝑗 , 𝑗 = 𝑁𝑝 +𝑁𝑎 +

1,𝑁𝑝 +𝑁𝑎 + 2,… ,𝑁, respectively, and the 

inner and outer radii of the annular cracks are 𝑎𝑗 

and 𝑏𝑗, 𝑗 = 𝑁𝑝 + 1,… ,𝑁𝑝 +𝑁𝑎, respectively. 

Therefore, the number of all defects is 𝑁 = 𝑁𝑝 +

𝑁𝑎 +𝑁𝑐 . The parametric form of the above-

mentioned cracks can be written as: 
 

𝑟𝑗(𝑠) = 𝐿𝑗(1 − 𝑠), 

−1 ≤ 𝑠 ≤ 1  𝑓𝑜𝑟 𝑝𝑒𝑛𝑛𝑦 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑐𝑟𝑎𝑐𝑘𝑠 

𝑟𝑗(𝑠) = 𝐿𝑗𝑠 + 0.5(𝑏𝑗 + 𝑎𝑗), 

−1 ≤ 𝑠 ≤ 1  𝑓𝑜𝑟 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑐𝑟𝑎𝑐𝑘𝑠 

𝑟𝑗(𝑠) = 𝐿𝑗𝑠 + 0.5(𝑅 + 𝑑𝑗), 

−1 ≤ 𝑠 ≤ 1  𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙  
𝑒𝑑𝑔𝑒 𝑐𝑟𝑎𝑐𝑘𝑠                                               (22) 

 

in which 
 

𝐿𝑗 = 0.5 (23) 

{
 
 
 

 
 
 𝑐𝑗

𝑓𝑜𝑟 𝑝𝑒𝑛𝑛𝑦 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑐𝑟𝑎𝑐𝑘𝑠

(𝑗 = 1,2,… ,𝑁𝑝)

𝑏𝑗 − 𝑎𝑗
𝑓𝑜𝑟 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑐𝑟𝑎𝑐𝑘𝑠

(𝑗 = 𝑁𝑝 + 1,𝑁𝑝 + 2,… ,𝑁𝑝 +𝑁𝑎)

𝑅 − 𝑑𝑗

𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑑𝑔𝑒
𝑐𝑟𝑎𝑐𝑘𝑠 (𝑗 = 𝑁𝑝 + 𝑁𝑎 + 1

,𝑁𝑝 +𝑁𝑎 + 2,… ,𝑁)

 

 

 

Let dislocations with unknown densities 𝑏𝜃𝑗(𝑡) 
be distributed on the infinitesimal segment at the 

surface of the j-th concentric (penny shape or 

annular or circumferential edge) crack situated at 

𝑧 = 𝑧𝑗 . Using Eq. (21), the traction component 

𝜏𝜃𝑧(𝑟𝑖(𝑠), 𝑧𝑖), 𝑖 = 1,2, … ,𝑁 on the surface of the 

i-th crack caused by distributing of the 

dislocations on all surfaces of the cracks yields: 
 

𝜏𝜃𝑧(𝑟𝑖(𝑠), 𝑧𝑖)

=∑∫ 𝑘𝑖𝑗(𝑠, 𝑡)𝑏𝜃𝑗(𝑡)
1

−1

𝑑𝑡

𝑁

𝑗=1

, 𝑖

= 1,2,… ,𝑁 

 

(24) 

where the kernel of integrals 𝑘𝑖𝑗(𝑠, 𝑡) are given 

by: 

 

𝑘𝑖𝑗(𝑠, 𝑡)

= 𝐿𝑗{
𝑟𝑗(𝑡)𝜇

𝜋
∫

𝜉𝐼1(𝜉𝑟𝑖(𝑠))

𝐼2(𝜉𝑅)
[
2

𝑅2𝜉2

∞

0

− 𝐼0(𝑟𝑗(𝑡)𝜉)𝐾2(𝑅𝜉)]𝑐𝑜𝑠(𝜉(𝑧𝑖 − 𝑧𝑗))𝑑𝜉 

−
𝑟𝑗(𝑡)𝜇

2
 

∫ 𝜂𝑒−𝜂|𝑧𝑖−𝑧𝑗|𝐽0(𝜂𝑟𝑗(𝑡))𝐽1(𝜂𝑟𝑖(𝑠))𝑑𝜂
∞

0

} 

 

(25) 

 

By virtue of Bueckner’s principle [28] the left-

hand side of Eq. (24), after changing the sign, is 

the traction caused by applying the torques on 

the intact finite cylinder at the presumed surfaces 

of the cracks. The applied traction on the intact 

infinite cylinder is taken to be as the second 

equation of Eq. (16), and its equalizer loading, as 

well as the resulting stress components, read as 

Eq. (21). The crack opening displacement by 

considering the definition of the dislocation 

density function is given by: 

 

𝑢𝜃𝑗
+ (𝑠) − 𝑢𝜃𝑗

− (𝑠)

=
𝐿𝑗

𝑟𝑗(𝑠)
∫ 𝑟𝑗(𝑡)𝑏𝜃𝑗(𝑡)
𝑠

−1

𝑑𝑡, 

𝑗 = 1,2,… ,𝑁 

 

     (26) 

 

It is known that the displacement field is single-

valued away from the penny-shaped and annular 

crack surfaces. Therefore, the dislocation density 

for the j-th crack of these kinds must be 

subjected to the closure requirement as 

∫ 𝑟𝑗(𝑡)𝑏𝜃𝑗(𝑡)𝑑𝑡
1

−1
= 0, 𝑗 = 1,2,… ,𝑁.  

The Cauchy singular integral Eq. (26) and the 

closure equations for the penny-shaped and 

annular cracks, that is,  ∫ 𝑟𝑗(𝑡)𝑏𝜃𝑗(𝑡)𝑑𝑡
1

−1
= 0 

are solved simultaneously to determine the 

dislocation density function. The stress fields 

have a square-root singularity at the crack tips 

[29]. For penny-shaped and edge cracks, the 

embedded crack tip is assumed at 𝑡 = −1. Thus, 

the dislocation densities for each kind of the 

cracks, are taken as [23, 27-29]: 
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𝑏𝜃𝑗(𝑡) =
𝑔𝑎𝑗(𝑡)

√1 − 𝑡2
 

for penny-shaped and annular cracks 

𝑏𝜃𝑗(𝑡) = 𝑔𝑐𝑗(𝑡)√
1 − 𝑡

1 + 𝑡
 

𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑑𝑔𝑒 𝑐𝑟𝑎𝑐𝑘𝑠 

 

 (27) 

 

 

 

 

Viewing Eq. (27), the numerical solution of the 

integral Eq. (24), in conjunction with the closure 

requirement for penny-shaped and annular 

cracks i.e. ∫ 𝑟𝑗(𝑡)𝑏𝜃𝑗(𝑡)𝑑𝑡
1

−1
= 0, is carried out 

by minor generalization of the procedure 

developed in Ref. [23]. These integral equations 

are discretized at the collocation points 

 𝑡𝑘 = 𝑐𝑜𝑠 (
2𝑘−1

2𝑛
𝜋) , 𝑘 = 1,2, … , 𝑛 and  

𝑠𝑟 = 𝑐𝑜𝑠 (
𝑟

𝑛
𝜋) , 𝑟 = 1,2,… , 𝑛 − 1. Because the 

number of ensuing algebraic equations is  

𝑁𝑛 − 𝑁𝑐 while the number of unknowns 

𝑔𝑝𝑗(𝑡𝑘), 𝑗 = 1,2, … ,𝑁𝑝 and  

𝑔𝑎𝑗(𝑡𝑘), 𝑗 = 𝑁𝑝 + 1,𝑁𝑝 + 2,… , 𝑁𝑝 +𝑁𝑎 and 

𝑔𝑐𝑗(𝑡𝑘), 𝑗 = 𝑁𝑝 +𝑁𝑎 + 1,… ,𝑁 is 𝑁𝑛, Eq. (24) 

is discretized at the new arbitrary distinct 

discrete point other than 𝑠𝑟 and 𝑡𝑘 , that is, the 

point 𝑠0𝑐 = 1. Finally, the integral equations are 

reduced to the following system of 𝑁𝑛 linear 

algebraic equations: 

 

[

𝑯11 𝑯12
𝑯21 𝑯22

… 𝑯1𝑁
… 𝑯2𝑁

⋮ ⋮
𝑯𝑁1 𝑯𝑁2

⋱ ⋮
… 𝑯𝑁𝑁

]{

{𝑔𝑝𝑗(𝑡𝑘)}

{𝑔𝑎𝑗(𝑡𝑘)}

{𝑔𝑐𝑗(𝑡𝑘)}

}

= −{

{𝜏𝜃𝑧(𝑟𝑖(𝑠𝑟), 𝑧𝑖)}

{𝜏𝜃𝑧(𝑟𝑖(𝑠𝑟), 𝑧𝑖)}

{𝜏𝜃𝑧(𝑟𝑖(𝑠𝑟), 𝑧𝑖)}
} 

 

(28) 

 

in which the entries of the matrix and the 

components of vectors are given at Ref. [23]. 

Stress intensity factors for the singular crack tips 

of other kinds of the cracks are already written 

as: 

 

{
 
 

 
 
𝑘𝐼𝐼𝐼𝐿 =

𝐺𝑟𝜃√𝐿𝑗

2
𝑔𝑧𝑗(−1)

𝑘𝐼𝐼𝐼𝐿 =
𝐺𝑟𝜃√𝐿𝑗

2
𝑔𝑧𝑗(+1)

  

 

(29) 

𝑓𝑜𝑟 𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑐𝑟𝑎𝑐𝑘𝑠 

𝑘𝐼𝐼𝐼 =
𝐺𝑟𝜃√𝐿𝑗

2
𝑔𝑧𝑗(−1)   

𝑓𝑜𝑟 𝑝𝑒𝑛𝑛𝑦 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑐𝑟𝑎𝑐𝑘𝑠 

𝑘𝐼𝐼𝐼 = 𝐺𝑟𝜃√𝐿𝑗𝑔𝑧𝑗(+1)   

𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑑𝑔𝑒 𝑐𝑟𝑎𝑐𝑘𝑠 
 

5. Results and discussion 

 

Let us first validate our solution with the 

published results. To this end, the paper is 

furnished to the examples 1-5. The capabilities 

of the procedure are also demonstrated by 

solving two more examples (Examples 6 and 7), 

as follows: 

 

Example 1 

 

An isotropic elastic space with an annular crack 

is considered under pure torsion, that inner and 

outer radii of the crack are 𝑎 and 𝑏, respectively. 

Also, the surface of the crack is subjected to a 

constant twisting load 𝜏0. The normalized stress 

intensity factors, 𝑘𝐼𝐼𝐼/𝑘0 are depicted, with an 

excellent agreement with Ref. [30], in Fig. 3, 

wherein 𝑘0 = 𝜏0√𝑏.  
 

Example 2 

 

In the second example of validation, an infinite 

space with one penny shape crack, under 

torsional loading, is considered. The shear stress 

resulting from the torsion is 𝜏0𝑟/𝑅, in which 𝜏0 

is constant, and also  𝑟 and 𝑅 are the radial 

general coordinate and the radius of the crack, 

respectively. In Ref. [31], the stress intensity 

factor (SIF) was normalized by devisor 𝜏0√𝑅. 
The normalized SIF was constant (4𝜋/3). 
Comparison of the results obtained from the 

normalized SIF of this study for a penny shaped-

crack and those available in Ref. [31] shows an 

exact agreement. There is only one more 

coefficient √𝜋 in definition of the stress intensity 

factor in Ref. [31] in comparison with the present 

work which is a well-known coefficient in the 

literature. 
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Fig. 3. Stress intensity factors for an annular crack in 

the elastic space. 
 

Example 3 
 

In another example of validation, an isotropic 

long cylinder with a radius 𝑅, weakened by a 

concentric penny-shaped crack with a radius 𝑎 is 

considered. The crack is subjected to torsional 

loading. The shear stress on the surface of the 

cracks has the same distribution of Example 2. 

Dimensionless stress intensity factors 𝑘𝐼𝐼𝐼/𝑘0, 

by assuming 𝑘0 =
4𝜏0

3
√𝑎 𝜋⁄  , are listed in Table 

1 and is compared with those given in Ref. [32]. 

Also, the stress intensity factors of this paper 

must be multiplied by the coefficient√𝜋. As it 

can be seen, there is good agreement between the 

results. Also, the stress intensity factor of the 

crack tip is increased by crack growth. 
 

Table 1. Dimensionless stress intensity factors 

𝑘𝐼𝐼𝐼/𝑘0 in term of  𝑎 𝑅⁄ . 
𝑎

𝑅
 0.1 0.2 0.3 

𝑘𝐼𝐼𝐼 𝑘0⁄  
Present study 

1.000 1.0001 1.0006 

𝑘𝐼𝐼𝐼 𝑘0⁄  
Ref. [32] 

1.000 1.002 1.007 

 

Example 4 
 

An infinite cylinder with radius 𝑅 weakened by 

a circular edge crack with the crack depth 𝑅 − 𝑎 

is considered. Table 2 gives a comparative 

analysis of the dimensionless stress intensity 

factor obtained by use of the present method and 

those attained by Refs. [17, 33]. The crack 

surface is under the constant moment 𝑀. The 

stress intensity factor is normalized with aid of a 

divisor 𝑘0 =
2𝑀√𝑅

√𝜋𝑎3
. As it can be seen from the 

tabulated results, the discrepancy is negligible. 

In this example, an additional coefficient √𝜋 for 

the stress intensity factors must be considered. 

The stress intensity factor of the crack tip is 

initially enlarged by crack growth, and then it 

experiences a little reduction for deeper crack 

depth. 
 

Table 2. Normalized stress intensity factors, for a 

circular edge crack in an infinite cylinder. 
𝑅 − 𝑎

𝑅
 0.05 0.1 0.2 

𝑘𝐼𝐼𝐼 𝑘0⁄  

 
0.1987 0.2521 0.2914 

𝑘𝐼𝐼𝐼 𝑘0⁄  

[17] 
0.199 0.252 0.292 

𝑘𝐼𝐼𝐼 𝑘0⁄  

[33] 
0.210 0.231 0.274 

𝑘𝐼𝐼𝐼 𝑘0⁄  

[33] 
0.2007 0.2552 0.2956 

 

Example 5 
 

An isotropic infinite long cylinder containing 

two concentric symmetric penny-shaped cracks 

is analyzed for validation with Ref. [16]. Any 

cross-section of the cylinder is subjected to a 

constant torsional load, 𝑀. The distance between 

the cracks is assumed to be 2ℎ and radii of the 

cracks are 𝑎. Displayed in Fig. 4 are the 

variations of the non-dimensional SIF, 

(𝑘𝐼𝐼𝐼 𝑘0⁄ , 𝑘0 = 2𝑀𝑅√𝜋𝑅 (𝜋(𝑅4 − 𝑏4))⁄ ), for 

two penny-shaped cracks versus 𝑎/𝑅 and for 

different values of ℎ/𝑅. Also, the proposed 

relation of the SIF in this study must be 

multiplied by the coefficient√𝜋. 
 

 
Fig. 4. Graph of the stress intensity factors with 𝑎/𝑅 

for two symmetric penny-shaped cracks. 
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Example 6 

 

Torsion of a long cylinder with a penny-shaped 

crack, an annular crack and a circumferential 

edge crack in 𝑧 = 0, as shown in Fig. 5, are 

considered. The stress field affecting the cracks 

which is resulted from the torsional loading is 

obtained by Eq. (21). The loading is specified by 

𝑑1 = 2.5𝑅, 𝑑2 = 3ℎ. Center of the annular 

crack with inner and outer radii 𝑎1 and 𝑏1 is 

located at 𝑟 = 0.5𝑅. Additionally, 𝑙 is 

considered to be the half-length of the annular 

crack and the length of the edge crack.  

 

 
Fig. 5. A long cylinder with one annular crack one 

circumferential edge crack.  

 

The normalized stress intensity factors, 𝑘𝐼𝐼𝐼 𝑘0⁄  

calculated by the dislocation method are plotted 

in Figs. 6 and Fig 7 in isotropic and orthotropic          

(𝐺 = 1.2) case, respectively, in which 𝑘0 =

𝜏0√𝑅. It can be observed that the normalized 

stress intensity factors for all the tips of the 

cracks roughly increase with increasing the 

length of the cracks. Also, the interaction 

between the crack tips is significant. The stress 

intensity factor grows as the distance between 

the crack tips reduces. 

 

Example 7 

 

As a final example, a long cylinder with the of 

edge two annular cracks in 𝑧 = 0 is considered. 

Center of the annular cracks are situated at 𝑟 =
0.25𝑅 and 𝑟 = 0.75𝑅, respectively, as shown in 

Fig 8. The curves, shown in the Figs. 8 and 9, 

display variation of the dimensionless stress 

intensity factors corresponding to the 

dimensionless half-length of the cracks for the 

isotropic and orthotropic cases. The figure shows 

that stress intensity factors for all of the crack 

tips increase rapidly with growing crack length, 

because of the interaction of the singular crack 

tips. 
 

 
Fig. 6. Variation of the dimensionless stress intensity 

factor versus the crack length in isotropic case. 
 

 
Fig. 7. Variation of the dimensionless stress intensity 

factor versus the crack length in orthotropic case. 
 

 
Fig. 8. Variation of the dimensionless stress intensity 

factor versus the crack length in isotropic case. 



JCARME                                                    A. R. Hassani, et al.                                              Vol. 8, No. 1 

58 

 

 
Fig. 9. Variation of the dimensionless stress intensity 

factor versus the crack length in orthotropic case. 

 

6. Conclusions 

 

A solution of the problem of an orthotropic long 

cylinder plane subjected to torsional loading 

weakened by a rotational Somigliana ring 

dislocation is first presented in terms of 

dislocation densities. Consequently, the stress 

field in an aforementioned region under torsion 

is given. The dislocation densities on the cracks 

surfaces are obtainable by solving a set of 

integral equations of Cauchy singular type. 

Finally, the distributed dislocation technique is 

used to solve the problems with multiple 

axisymmetric cracks. Some numerical examples 

about the variation behavior of stress intensity 

factors are given to study the effects of the 

geometry of the cracks, interactions between the 

crack tips and distance of the crack tip from 

traction free surface. In summary, the stress of 

crack tips in circular planes can depend on 

critical factors such as the distance of the crack 

tip from the free boundary of the circular region 

and the location of traction.  
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