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Abstract. A useful tool for investigation various problems in mathematical chemistry and com-
putational physics is graph entropy. In this paper, we introduce a new version of graph entropy and
then we determine it for some classes of graphs.
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1 Introduction

Let G be a simple graph with adjacency matrix A. The Laplacian matrix of graph G is
defined as L = D − A where D = [dij] is a diagonal matrix with dii = degG(vi), and dij = 0;
otherwise. The spectra of L are a sequence of its eigenvalues displayed in increasing or-
der, denoted by LSepc(G) = {0 = µn,µn−1, . . . ,µ1}. they are the roots of Laplacian charac-
teristic polynomial ϕµ(G) = det(µI − L). If G has exactly s distinct Laplacian eigenvalues
µ1,µ2, . . . ,µs with multiplicity mi, (1 ≤ i ≤ s), then the Laplacian spectra of G is the following
multiset [1]:

Lspec(G) = {[µ1]
m1 , [µ2]

m2 , . . . , [µs]
ms}.

If we put γi = µi − 2m
n , then the Laplacian energy of G is defined as

LE(G) =
n

∑
i=1

|γi|.
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Figure 1. The cycle graph C3.

Figure 2. The directed cycle graph C3.

The graph entropy is a functional depending both on the graph itself and on a probability
distribution on its vertex set. This graph functional were proposed by a problem in informa-
tion theory about source coding. It was introduced by J. Körner in 1973. Although the roots
of graph entropy is in information theory, it was proved to be closely related to some classical
and frequently studied graph theoretic concepts. von Neumann says the entropy of a system
measures how much information the modelisation of a system does not provide.

To describe a vertex in a graph, we could use its degree, its eccentricity, its average dis-
tance from all vertices et cetera. But not necessarily these properties will describe that vertex.
Consider, the cycle graph C3 depicted in Figure 1. All vertices have the same properties.
Their degree, their eccentricity, their average distance, etc are the same. Hence, it is impossi-
ble to provide enough information to identify it. In practice, this is a ”high entropy” graph,
because does not provide much information about its constituents. It is better to add at least a
label to them, as the graph’s topology does not help. Consider now the directed cycle graph
C3 in Figure 2. It is evident that there are no permutations which would leave the matrix
unchanged and we can identify vertices related to entropy.

Suppose the logarithm based on 2 is denoted by the symbol=6og=Let p = (p1, · · · , pn)

be a probability vector, namely 0 ≤ pi ≤ 1 and
n

∑
i=1

pi = 1. The Shannon’s entropy [10] of p is

defined as

I(p) = −
n

∑
i=1

pilog(pi).

To define information-theoretic graph measures, we often consider a tuple (λ1, · · · ,λn) of
non-negative integers λi ∈ N. This tuple forms a probability distribution p = (p1, · · · , pn),
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see [2–9] where

pi =
λi

n

∑
j=1

λj

.

Therefore the entropy of tuple (λ1, · · · ,λn) is given by

I(λ1, · · · ,λn) = −
n

∑
i=1

pilog(pi) = log(
n

∑
i=1

λi)−
n

∑
i=1

λi
n

∑
j=1

λj

log(λi).

In the literature, there are various ways to obtain the tuple (λ1, · · · ,λn) like graph eigen-
values or partition-independent graph entropies, introduced by Dehmer [7] which are based
on information functionals. Here, suppose µ1, · · · ,µn are Laplacian eigenvalues of G and
γi = µi − 2m

n (1 ≤ i ≤ n), where γi ̸= 0, then the entropy of G based on the Laplacian spec-
trum of G is defined as

IL(G) = log(
n

∑
i=1

|γi|)−
n

∑
i=1

|γi|
n

∑
j=1

|γj|
log(|γi|) (1)

= log(LE(G))− 1
LE(G)

n

∑
i=1

|γi|log(|γi|). (2)

Example 1.1. The Laplacian eigenvalues of complete bipartite graph Km,n on m + n vertices are

[m + n]1, [m]n−1, [n]m−1, [0]1.

Hence,

LE(G) =
2mn

m + n
+

2m
n

and thus

IL(G) = log(
2mn

m + n
+

2m
n

)− 1
2mn
m+n + 2m

n

(
A
)
,

where

A =
m2 + n2

m + n
log

(m2 + n2

m + n
)
+

m(n − 1)(m − n)
m + n

log
(m(m − n)

m + n
)

+
n(m − 1)(n − m)

m + n
log

(n(n − m)

m + n
)
+

2m
n

log
(2m

n
)
.

Theorem 1.2. We have

IL(G) ≥ log
( LE(G)

Πn
i=1|γi|

)
.
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Figure 3. The Petersen graph P.

Proof. It is clear that
n

∑
i=1

|γi|log(|γi|) ≤
n

∑
i=1

|γi|
n

∑
i=1

log(|γi|).

This means that

IL(G) ≥ log(LE(G))− LE(G)

LE(G)

n

∑
i=1

log(|γi|) = log(LE(G))−
n

∑
i=1

log(|γi|).

Since log( a
b ) = log(a)− log(b), the proof is complete.

Theorem 1.3. Let G be a regular graph, then IL(G) = I(G).

Proof. It is a well-known fact that if G is a k-regular graph with Laplacian eigenvalue µ corre-
sponded to ordinary eigenvalue λ, then µ = k − λ. This means that |γi| = |λi| and the proof
is complete.

Example 1.4. The Petersen graph P depicted in Figure 3 is an integral cubic graph with graph spec-
trum {[−2]4, [1]5, [3]1}. Hence, LE(GP) = E(P) = 4.2 + 5.1 + 3.1 = 16. This means that

I(P) = IL(P) = log(16)− 1
16

(
4 × 2 × log(2) + 3 × log(3)

)
≈ 4.8.

Example 1.5. The complete graph Kn is an integral (n − 1)-regular graph with graph spectrum

{[−1]n−1, [n − 1]1}.

Hence,

I(P) = IL(P) = log(2n − 2)− n − 1
2n − 2

log(n − 1) = 1 + log(
√

n − 1).

Example 1.6. Consider the dodecahedron graph C20 depicted in Figure 4. This a cubic graph with
graph spectrum

{[−
√

5]6, [−2]4, [0]4, [1]5, [3]1}.

Hence,
I(P) = IL(P) ≈ 3.
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Figure 4. The dodecaheron C20.
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