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Article info:  Abstract 
In this study, a numerical solution of 2D steady incompressible lid-driven 
cavity flow is presented. Three different numerical schemes were employed 
to make a comparison on the practicality of the methods. An alternating 
direction implicit scheme for the vorticity-stream function formulation, 
explicit and implicit schemes for the primitive variable formulation of 
governing Navier-Stokes equations were attempted. A fairly fine uniform 
grid was adopted for all the cases after a technical procedure was applied to 
come up with the proper mesh size that would make the solution roughly 
independent of mesh quality. The solutions obtained for different Reynolds 
numbers are presented and compared. Superiority of numerical approaches 
was investigated and compared to benchmark solutions available in the 
literature. Based on the results of the present research, it can be claimed that 
explicit scheme used for primitive variable formulation can be only half the 
way (as in Re=2500 for explicit to Re=5000 for ADI and implicit schemes) as 
successful as the other two numerical methods due to its relative simplicity. 
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Nomenclature 

A Bottom surface of cavity, m2 ∆x= ∆y Grid size, m 
cs Control surface, m2 y+ Non-dimensional wall distance 
cv Control volume, m3 Greek letters 
N Number of grid nodes   Volume, m3 
R Residual   Vorticity 
Re Reynolds Number ν Kinematic Viscosity, m2/s 
P Pressure, N/m2 ρ Density, kg/m3 
x, y x and y coordinate respectively, m   Over relaxation parameter 
t Time, s   Stream function 
u, v x and y velocity respectively (m/s) Subscripts 
U, V x and y velocity along the vertical centerline respectively, 

m/s 
i, j Number of mesh in x and y directions respectively 

u+ Non-dimensional velocity Superscripts 
Uo Constant velocity, m/s n Number of time step 
U* Shear stress velocity, m/s   
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1. Introduction  
 
Lid-driven cavity flow is considered as one of 
the most studied problems in the field of 
computational fluid dynamics (CFD) due to its 
simple geometry and the fluid inside retaining all 
the flow physics. The flow is confined from all 
four sides and is a case of a recirculating flow 
prompted by the moving the top lid with the 
other three walls at rest. Lid-driven cavity flow 
is also considered as a benchmark for testing 
numerical efficiency and accuracy of different 
numerical methods [1].  
A number of the research papers related to the 
flow in a driven cavity may be divided into two 
categories, i.e. the physical side of the flow and 
confirmation of the newly evolved numerical 
schemes [2]. Most of the flow pattern studies 
inside the cavity pertain to the steady state, but 
very few studies focused on the mechanisms of 
transients until the steady state is achieved [3]. 
For low Reynolds numbers, most of the 
numerical methods show similar results but as 
the Reynolds number starts increasing, results 
are different from each other. Also, some 
researchers predict that the flow remains steady 
at high Reynolds number while others show that 
the flow is unsteady.  
Peng et al. [4] investigated transition process in 
a square lid-driven cavity from laminar to 
chaotic flow. They found out that the flow 
remains steady up to Re=7402 and then as 
Reynolds number increases to 11000, the flow is 
in a transition phase after which it is finally 
routed to chaotic flow for Reynolds number 
greater than 11000. Bruneau and saad [5] -
through numerical simulations- investigated the 
boundaries of steady state solution for high 
Reynolds numbers in a square cavity. They 
observed that steady solution is unstable at 
Re=10000. They identified a large vortex with 
two secondary vortices in the bottom left and 
right corners for Re=1000 and a secondary and 
tertiary vortex in the bottom left corner. 
There has so far been no solid agreement in CFD 
community over the transient Reynolds number 
at which flow turns into turbulent. Ghia et al. [6] 
employed the vorticity-stream function 
formulation of the 2D incompressible Navier-

Stokes equations to investigate the affectivity of 
coupled strongly implicit multigrid (CSI-MG) 
method for determining the high-Re fine-mesh 
flow solutions in square cavity flows. Results 
were obtained for configurations with Reynolds 
number as high as 10000 and mesh size of 
257×257. Barragy and Carey [7] showed 
calculations for the 2D driven cavity 
incompressible flow problem. A p-type finite 
element scheme for the fully coupled stream 
Function-Vorticity formulation of the Navier-
Stokes equations was used. To show the vortex 
flow features in detail and minimize the impact 
of corner singularities, graded meshes were 
used. They observed that for the Re up to 12500, 
steady state solutions can be maintained.  
Zdanski et al. [8] performed a numerical 
simulation to study the comparison between 
laminar and turbulent flows over shallow 
cavities and examined the effect of Reynolds 
number, aspect ratio and inlet turbulence level 
on turbulent flow. They observed that with 
increasing Reynolds number the center of the 
laminar structure of vortex is decreased. By 
contrast, the center of both large and small 
structures for turbulence case was seen to be 
unchanged. Erturk [1] studied lid-driven cavity 
flow using physical, mathematical and 
numerical methods in detail and suggested that 
for very high Reynolds numbers finer grids are 
important for the resolution of the flow. At 
Re=7500, the quaternary vortex at the bottom left 
corner was observed indicating an improvement 
over previous results. Kumar et al. [9] simulated 
a lid-driven cavity flow using a multigrid method 
full approximation scheme. The main conclusion 
of the study was that it is possible to obtain 
solutions with higher order discretization on a 
very fine grid by using the multigrid method. 
Moshkin and Poochinapan [10] developed a new 
finite-difference scheme to solve the 2D Navier-
Stokes equations in the lid-driven cavity flow. 
The results obtained in all test cases were in 
excellent agreement with other established 
numerical results.  
Poochinapan [11] introduced a finite difference 
scheme to treat nonlinear convective terms in the 
stream function formulation and applied to the 
flow in the lid-driven cavity. The results showed 
that the internal iteration technique performs 
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robustly and allows one to accurately follow the 
flow patterns. Yapici and Uludag [12] presented 
computer simulation results (a non-uniform 
version of the QUICK scheme) of steady 
incompressible flow in a 2D square lid-driven 
cavity up to Re=65000. The results demonstrated 
that discretization of the flow field by using a 
non-uniform mesh structure increased the 
accuracy and non-oscillatory solutions at high 
Re. Salah Uddin and Saha [13] investigated 
numerically the lid-driven cavity flow with wavy 
bottom surface. They examined the effects of Re, 
the number of undulations and the grid size on 
numerical solutions of streamlines. The results 
showed that the wall undulation has an effect 
upon the flow in the lid-driven square cavity. By 
using the number of undulations at the bottom 
surface of a cavity, the skin friction increased. 
Marioni et al. [14] used a variational multiscale 
finite element approach to solve a conducting 
fluid inside a two-dimensional square domain. 
The study focused on a high magnetic interaction 
parameter range and high Re. An expression to 
calculate the maximum time step that guarantees 
convergence in explicit schemes was presented 
and validated through numerical tests. 
In the present paper, the attempt is to make a 
robust comparison over the extent to which three 
different but major numerical algorithms of 
solving cavity problem can be applied. In 
addition, algorithms for solving the governing 
equations are explained in a more down to detail 
fashion as of an instructive vessel. With all this, 
the computer codes and discretization procedure 
can be supplied for the avid reader upon request. 
 
2. Material and method 
 
2.1. Numerical methods for solution 
 
2.1.1. Alternating direction implicit method (ADI) 
 
It is usually convenient to adopt the vorticity (
) transport and stream function ( ) formulation 
of Navier-Stokes equations for two-dimensional 
plane flows. The governing equations are as 
follows: 

2 2

2 2
x y
 


 

  
 

                                                (1) 

2 2

2 2
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        (2) 

In order to solve the   and  , a numerical 
approach is required. Many algorithms exist in 
the literature; the one method suitable for the 
condition is the alternating direction implicit 
method (ADI) for vorticity transport equation 
and point successively over-relaxation (PSOR) 
method for stream function equation. The type of 
discretization for the vorticity transport equation 
is forward time central space differences (FTCS) 
as shown in Eq. (3). Also, the convective terms 
have to undergo first-order upwind.  
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In the ADI method,
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 (final solution) using the 
solution available from a previous time step in 
the other direction normal to the initial direction, 
that is, 
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. 
The stream function is a Poisson type differential 
equation which is solved via the SOR algorithm. 
The finite difference discretization -with 2nd 
order accuracy- of the equation is written as:  
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The solution is followed by the calculation of 
residuals and substitution of it in the point 
successive over relaxation formula to compute 
the point wise stream function all over the flow 
domain. For  x y   : 
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where   is an over relaxation parameter that 
accelerates the convergence of the iterations. 
The value of   is dependent on the mesh size, 
geometry of the flow domain and the boundary 
conditions. The optimum value of the  was 
determined as 1.93 through a different approach. 
The method used for determination of   value 
has been shown in Fig. 1. In this figure, N is the 
number of grid nodes in each direction over the 
flow domain and N=130 was decided after 
careful observations of numerical independency 
on grid size for N=130 (more explanation in part 
3). It is noteworthy that the curves overlap on top 
of one another after N exceeds 101, thus the 
Curve for N=130 has not been shown to avoid 
confusion while the value of   is absolutely the 
same as that of N=101.  
In Fig. 1, error specified on the vertical axis is an 
overall space average error over the 
computational domain and is the summation of 
differences between the exact and numerical 
solution of the Poisson equation for a variety of 
the mesh configurations. 
 
2.1.2. Primitive variables (u, v, P) explicit 
formulation 
 
The following equations are continuity and 
momentum balance in primary directions in 
integral form (same as Navier-Stokes equations):  
 

1. .
c cs cs c dp

t dxc cs cs c
ud uV dA u dA d

 

 



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. 0
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cs
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In Eq. (7), the first term from left-hand side is 
called the local term (or unsteady term), and the 
2nd is convective term. On the right-hand side of 
the equation (Eq. (7)), the first term is named 
viscous damping responsible for resistance to 
flow and the rightmost one is the source term. On 
the right-hand side of the equation (Eq. (7)), the 
first term is named viscous damping responsible 
for resistance to flow and the rightmost one is the 
source term. Finite volume on the uniform 
rectangular grid with 2nd order accuracy has 

been used to discretize and integrate the 
governing equations over a control volume. The 
control volume has been shown in Fig. 2 which 
shows the staggered discretization with 
dependent variables on it.  
The time-dependent momentum equations in 
two primary directions are solved explicitly for 
the velocity field. The local time-dependent 
terms are handled in a time-marching trend 
iteratively to reach stability which implies that 
the discrete solution of (u-v-P) coming from an 
earlier time step is used in place of the next 
iteration as long as old and new primitive 
variables change no more with respect to time 
pass. That is, un+1 is first calculated based on un 
and then in the second iteration, un+1 is used in 
place of un

 to come up with the updated un+1. This 
trend goes on so long as un+1and un are nearly 
equal. By looking at the discretized unsteady 
term of Navier-Stokes equations, same 
understanding can be achieved where un+1 is 
replaced by un in a proceeding time step until 
convergence as: 

1

, ,

n n
cs i j i j

cs

u u
ud x y

t t




   

                              (10) 

 
To prevent solution instabilities, the first-order 
upwind method has been used for convective 
terms. Upwind effectively takes into account the 
propagation of information on the flow field by 
either back or forward differencing the 
convective terms based on flow direction. 
Continuity equation has undergone a major 
manipulation to be converted into pressure 
equation. It is noteworthy that discrete pressure 
is located at the cell center with velocity sitting 
all around it to build up a staggered uniform grid 
as shown in Fig. 2. Again for the pressure 
equation, SOR algorithm has been used with an 
over-relaxation value of 1.7. Same termination 
criteria were used for this case as the ADI. 
 
2.1.3. Primitive variables (u, v, P) implicit 
formulation 
 
For the implicit solution of the equations, Ansys 
Fluent the commercial code (licensed by Middle 
East Technical University (METU))    was used.
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Fig. 1. Determination of the optimal   value. 

 

 

Fig. 2. The finite volume cell with discrete primitive variables. 
 

When a straight calculation of the dependent 
variables cannot be made in terms of known 
quantities, the computation is said to be implicit. 
The equations under investigation (Eqs. (7-9)) 
are nonlinear and include the calculation of three 
unknowns at a time.  
Despite the fact that implicit formulation scheme 
corresponds to a set of linear equations which 
can be solved directly, Fluent makes use of 
iterative algorithms towards a final solution. 
Iterations are carried out to advance a solution 
through a series of steps from a starting state to 
a final stage named as the converged state. As a 
matter of fact, the iteration steps often do not 
demonstrate a realistic time-dependent behavior. 
In fact, this aspect of the implicit scheme makes 
it appeal for steady state computations, because 
the number of iterations needed for a solution is 
usually much smaller than the number of time 
steps required for a precise transient which 
asymptotically approaches towards steady state.  
 
2.2. Boundary conditions 
 
Application of boundary conditions for the 
cavity problem can be fallen into two types, the 

stationary walls and the moving lid. As long as 
the stationary wall is concerned, the no-slip 
boundary condition has to be implemented. For 
the vorticity stream function formulation, 
boundary condition has to be specified for both 
stream function and vorticity as such:  
 
2.2.1. Stationary walls  
 
Stream function takes a constant value on the 
wall which is adopted as zero in this problem. 
For vorticity transportation, Eq. (1) needs to be 
solved on the wall. By employing proper 
measures, the boundary condition can be 
computed as below: 
 

2 
  

 

n n
n wall adjacent to wall
wall

( )
O( x)

x x
 

        (11) 

 
where O( x)  is equated to zero since 2nd order 
accuracy of discretization has been used. The 
value of vorticity is exact on the wall and no 
interpolation is required. The boundary 
condition for the primitive variable formulation 
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is rather different since the staggered grid 
prevents the coincidence of no-slip boundary 
condition with the grid itself. The no-slip 
boundary condition needs to be imposed as such: 
 

 

 

     

     

 

 
Next to the wall Within flow domain

Next to the wall Outside flow domain

u

u





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                 (12) 
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Next to the wall Outside flow domain

v

v







                 (13) 

 
Equations (12, 13) are nothing but no-slip 
conditions at a point (wall) that is located 
between two grid points and interpolating comes 
in hand. 
 
2.2.2 Moving wall 
 
For the boundary condition of moving wall, 
suppose that the cavity lid moves with a constant 
velocity of Uo. Again by solving the Eq. (1) and 
making use of Taylor series expansion along 
with certain manipulations following relation 
can be yield: 
 

0
2( ) 2

n n
n wall adjacent to wall
Moving wall

U
y y y

 



 

  
    (14) 

For the implementation of the boundary 
condition on the moving lid in primitive variable 
formulation, the average of the velocities in the 
vicinity of the lid must be equated to the velocity 
of the moving lid. 

    0     2Within flow domain Outside flow domainu u U        (15) 

   0At the lidv                                                       (16) 

 
2.3. Grid quality 
 
For determination of grid quality, either previous 
studies should have been used or a systematic 
approach can reveal this. Normally, when one is 
solving a laminar flow there is almost no control 
over the selection of grid size since the rate of 
strain is linearly related to the shear stress and 
wall shear stress can be computed linearly with 
relative ease (y+=u+). The finer the mesh, the 

more details of flow can be captured. The wall 
functions (used for turbulent flows) which are to 
include the effect of roughness on the boundary 
can, however, be used to identify the best grid 
quality for a given problem. The trick to bear in 
mind is that in the turbulent flows the first grid 
beside the wall must fall in the validity zone of 
the wall functions (minimum y+=30, fully 
turbulent region). This is because the wall shear 
stress and consequent velocity distribution are 
computed according to that first velocity next to 
the wall which comes from wall functions. In 
this problem, the grid size is chosen as 130 in 
both directions. Wan et al. [15] developed a 
discrete singular convolution (DSC) solver for 
the driven cavity flow and concluded that the 
numerical solution is essentially grid 
independent as the mesh reaches 129×129. Salah 
Uddin and Saha [13] considered a base grid 
(125×125 grid points) as the best grid for the 
computational procedure of driven cavity flow. 
From literature, it is known that U*/U=0.04. If U* 
can be known, then the y+=30 can be satisfied 
[16]. To stay on the safe side the lid velocity was 
selected as 10 m/s and was replaced into the y+ 
relation to yield 133 (or rounded value of 130) 
number of grids for each direction. 
 
3. Results and discussion 

 
The commercial code Fluent has been used for 
the solution of the implicit formulation of 
governing equations. For the solution of 
vorticity-stream function equations and solution 
of the explicit formulation of primitive variable 
equations of motion, codes are developed and 
run in FORTRAN. Some technical information 
can be seen in Table 1 regarding the Re=2500. 
The results of the runs show that no difference 
exists between the three different numerical 
solutions up to a limiting Reynolds number of 
nearly 2500. With increasing the lid velocity 
above the limiting Reynolds number, the explicit 
numerical solution starts to fall apart of the other 
two algorithms.  
In Fig. 3, the streamline patterns exhibit the 
formation of counter-rotating secondary vortices 
which appears as the Reynolds number 
increases. The secondary vortices occur at the 
right and left bottom corners of the cavity. Also, 
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the third secondary eddy appears slightly near 
the upstream top corner [9]. Salah Uddin and 
Saha [13] investigated the lid-driven cavity flow 
with a wavy bottom surface and reported that for 
zero, first and second undulation, large 
recirculation in the clockwise direction occur in 
the bottom right and bottom left corner. Also, 
they observed that in low values of Re, v-velocity 
along the horizontal line through the cavity 
slightly affect near the left and right wall but 
there is no notable effect on the u-velocity 
profile. This can be seen in Fig. 3 where the third 
vortex has not been identified correctly by the 
explicit method while the other methods are 
almost giving identical results. As a matter of 
fact, the explicit solution has reached its stability 
edge at this Reynolds number while the third 
vortex can continuously appear and vanish as the 
oscillatory simulation goes on. 
Convergence is when the numerical solution has 
reached its optimum state and can be no more 
improved. For every numerical solution, there 
exist certain convergence criteria based on 
which iteration towards solution may have to be 
terminated. The present method for termination 
of the iterations of this numerical approach is 
based on monitoring the changes occurring in 
velocity field. That is, the overall value of mean 
velocity gets no more changes relative to one 
step iteration behind. To quantify this change, 
termination criteria were chosen. As a rule of 
thumb and according to numerous trials, 
termination criteria were chosen (for example, 
see Table 1). 
It is noteworthy that the smaller the value of this 
criteria, the longer and more expensive the 
computations. Convergence condition for 
vorticity-stream function solution is to stop 
iterations when maximum stream function value 
changes no more than 10-6 within an iteration. 

 

Table 1. Details of runs for the different numerical 
schemes in Re=2500. 
Numerical 
algorithm 

Lid force  
(N) 

Iteration 
number 

Convergence 
criteria 

Vorticity-Stream 0.011467 35620 0.000001 
Explicit u-v-P 0.011856 59276 0.000001 
Implicit u-v-P 0.012401 4048 0.001&  0.0001 

 

 

 

 

 
Fig. 3. Comparison of solutions for Re=2500. 
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For an explicit primitive variables solution, a 
criterion is to stop iterations when the mean 
velocity field value changes no more than 10-6 
within an iteration. Finally, convergence criteria 
for the fluent were adopted as 0.0001 for x and y 
momentum equations and 0.001 for continuity 
equation. These criteria are usually chosen as a 
rule of thumb for Fluent which is the indication 
of a change in the absolute values of mean 
variables by no more than 0.0001 and 0.001 
within an iteration. The residuals and 
convergence state has also been shown in Fig. 4 
for the Fluent run. 
Comparison of different numerical schemes for 
Re=5000 is given in Table 2 and Fig. 5. After the 
Re =2500, the separation starts to become vivid 
between the implicit solution and vorticity-
stream function solution as well. The 3rd vortex 
next to the back of the lid calculated in ADI 
(alternating direction implicit) cannot keep pace 
with the enlarging speed of that of the implicit 
method. Although the ADI method can handle 
Re=5000 with no signs of instability, the solution 
is not as accurate as that of the implicit method 
as well as the benchmark solutions available in 
the literature. This is due to the strength of 
implicit formulation scheme based on its 
complexity.  
These results have good agreement with the 
results of Erturk et al. [17], Poochinapan [11] 
and Salah Uddin and Saha [13]. As the Reynolds 
number increases, the relative size of secondary 
eddies in the bottom left and bottom right corner 
increases. Also, the third secondary eddy 
develops and enlarges at the top left of the cavity 
as well. In the implicit solution, the small tertiary 
vortex at the bottom right of cavity become 
visible for Re =5000. 
It must be noted that the claims of the present 
paper hold valid as long as grid quality is kept 
constant as in all three cases discussed (N=130). 
On the other hand, according to some literature 
research, signs of transition to turbulence are 
observed when Reynolds number reaches 6000 
to 8000 and when a grid mesh with less than 
257×257 points is used in cavity flow computer 
simulation, the solution starts to oscillate around 
Reynolds number range of 7500 to 12500 [1].  

The same was verified in the implicit solution of 
Re=7500 as shown in Fig. 6. 
 
Table 2. Details of runs for the different numerical 
schemes in Re=5000. 
Numerical 
algorithm 

Lid force 
(N) 

Iteration 
number 

Convergence 
criteria 

Vorticity-stream 0.0573 36695 0.000001 
Explicit u-v-P - - - 

Implicit u-v-P 0.0515 1544 0.001 &  
0.0001 

 
Fig. 4. Residual plot for Re=2500. 

 
 

 
Fig. 5. Comparison of solutions for Re=5000. 
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Although the flow field and number of vortices 
are similar to the benchmark solutions available 
in the literature, the convergence is suffering a 
steady state as seen in Fig. 7. With all this, Erturk 
and Gokcol [18] increased the Re number to 
20000 -obtaining a steady state condition- by 
using a very fine mesh of 1025×1025 with a 
fairly sophisticated numerical method. The 
results clearly show the thinning of the wall 
boundary layers with increase in Re, although the 
rate of this thinning is very slow for Re≥5000 [9]. 
Kumar et al. [9] indicated that changes in u and 
v velocities are almost linear in the core of a 
primary vortex as Re increases. This would 
indicate that the vorticity is uniform in the 
region. Also, the tertiary vortex at the bottom left 
corner grows in size for Re = 7500. Kumar et al. 
[9] also reported the augmentation of the tertiary 
vortices with the increase in the Reynolds 
number. 
 

 
Fig. 6. Result of Implicit u-v-P solution for Re=7500. 

 

 

Fig. 7. Residual plot for Re=7500. 

3. Conclusions 
 
Based on observations of the present research it 
can be claimed that explicit scheme used for 
primitive variable formulation can be only half 
the way (as in Re=2500 for explicit to Re=5000 
for ADI and implicit schemes) as successful as 
the other two numerical methods due to its 
relative simplicity. Then again, the limiting 
Reynolds number for this method can be raised 
if a finer mesh is used. Comparison of ADI and 
implicit formulation scheme also reveals that 
ADI can remain steady with equal Reynolds 
number of that of implicit formulation, but fails 
to identify the details of the flow field. 
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