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1. Introduction  
 
The convective flows over a stretching surface 
with heat and mass transfer plays an important 
role in manufacturing industries genuine 
equipment. So, in the past few decades, the 
researchers are tremendously interested in the 
boundary layer flows, which involves non-
Newtonian fluid flow over a stretching sheet It 
has various applications in the field of 
aerospace, medical, manufacturing of fibers, 
aerodynamics, biofluids, and marine 
engineering [1]. An unsteady MHD dusty fluid 

flow over a stretching surface was discussed by 
Gireesha et al. [2]. Olajuwon and Oahimire [3] 
analyzed the MHD and chemical reaction 
effects on micropolar fluid flow over a rotating 
frame with thermal diffusion effect.  Heat 
transfer analysis of MHD coupled flow over a 
permeable oscillating plate in the presence of 
radiation was investigated by Chauhan and 
Agarwal [4]. Makine et al. [5] illustrated an 
unsteady convection flow over a permeable flat 
plate in the presence of chemical reaction and 
radiation. Mixed convection flow of a second-
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grade fluid flow over a stretching sheet was 
examined by Das [6]. MHD convection flow of 
micropolar fluid flow over a vertical plate in the 
presence of Soret and Dufour effect was 
investigated by Srinivasacharya and Upendar 
[7].  
Boundary layer flow of a nanofluid past a 
stretching sheet in the presence of convective 
boundary condition was examined by Makinde 
and Aziz [8]. Olanrewaju et al. [9] discussed the 
radiation effects on an unsteady convection 
flow of a Sisko fluid past a flat plate. The 
boundary layer flow of an incompressible non-
Newtonian fluid flow past a nonlinearly 
stretching surface was discussed by Khan and 
Shezad [10]. They found that the skin friction 
coefficient decreases for higher values of 
power-law index parameter. An unsteady 
convective heat transfer analysis of an EG-
Nimonic 80a nanofluid flow past an infinite 
vertical plate in the presence of thermal 
radiation was investigated by Sandeep at al. 
[11]. Munir et al. [12] analyzed the heat transfer 
of a Sisko fluid flow over a bidirectional 
stretching sheet.  An axisymmetric flow of non-
Newtonian fluid flow over a stretching surface 
in the presence of thermal radiation was 
investigated by Khan and Shazad [13]. They 
proved that the material parameter has a 
tendency to enhance the velocity profiles. Khan 
et al. [14] examined the heat transfer 
characteristics of a Sisko fluid flow inside an 
annular pipe. The non-uniform heat source/sink 
effect on ferrofluid flow over a flat plate in the 
presence of aligned magnetic field and thermal 
radiation was studied by Raju et al. [15]. 
Makinde et al. [16] discussed the MHD 
stagnation point flow and heat transfer of a 
nanofluid past a convectively heated 
stretching/shrinking sheet in the presence of 
buoyancy effects. Hayat et al. [17] studied the 
boundary layer flow of an Oldroyd-B fluid and 
viscoelastic fluid over a stretching surface with 
convective boundary conditions.    
The chemical reaction and radiation effects on 
two-dimensional stagnation point flow of a 
viscous fluid past a stretching sheet with 
suction/injection effects were illustrated by 
Mohan Krishna et al. [18]. Zhou and Yan [19] 
studied the heat transfer analysis and MHD 

effect on a nanofluid flow by using lattice 
Boltzmann process.  An unsteady boundary 
layer MHD nanofluid flow through a stretching 
sheet with non-uniform heat source/sink and 
thermophoretic effects were discussed by 
Sandeep et al. [20]. Hayat et al. [21] illustrated 
the MHD flow of a nanofluid past an 
exponentially permeable stretching surface with 
convective boundary conditions. An unsteady 
heat transfer analysis of MHD nanofluid flow 
over a stretching surface in the presence of non-
uniform heat source/sink was examined by 
Shankar and Yirga [22]. Sandeep et al. [23] 
presented dual solutions for an unsteady MHD 
flow of a micropolar fluid past a 
stretching/shrinking surface in the presence of 
non-uniform heat source/sink. Magneto-
nanofluid flow in a rotating frame past an 
impulsively started porous flat plate was 
discussed by Das et al. [24]. Animasaun [25] 
studied the influence of thermophoresis on the 
free convection flow of MHD dissipative 
Casson fluid flow. Mutuku-Njane [26] 
discussed the MHD flow over a permeable 
vertical plate with convective boundary 
conditions. Free convective heat transfer of 
steady/unsteady flows over a stretching surface 
was analyzed by the researchers [27-31]. Very 
recently, the researchers [32-35] illustrated the 
heat and mass transfer behaviour of 
magnetohydrodynamic flows by considering 
stretching surface.  
In this study, a three-dimensional flow of 
chemically reacting magnetohydrodynamic 
Sisko ferrofluid flow over a bidirectional 
stretching surface in the presence of non-
uniform heat source/sink, nonlinear thermal 
radiation, and suction/injection is analyzed. 
After applying the self-suitable similarity 
transforms the transformed nonlinear ordinary 
differential equations are solved numerically 
using Runge-Kutta and Newton’s methods. 
Results present the effects of various non-
dimensional governing parameters on velocity, 
temperature, and concentration profiles. Also, 
computed and discussed the friction factor 
coefficients along with the local Nusselt and 
Sherwood numbers.  
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2. Mathematical formulation 
  
The continuity and momentum equations for 
this steady flow of an incompressible Sisko 
nano and ferro fluids with the velocity field 

     , , , , , , , ,V u x y z v x y z w x y z     are stated 
as follows: 

0,u v w
x y z
  

  
  
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Defining the dimensionless variables and 
parameters as: 
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where L  is the characteristic length and U  is 
the characteristic velocity. Here the inertial and 
viscous forces are of the same order of 
magnitude within the boundary layer, taking 

   
2 1

2

/ /1 ,  1
n

n n

a L b LO O
LU L U
 





   
    

    

 and under 

the assumption of large Reynolds numbers, 
Eqs. (1-4), in terms of dimensionless variables, 
asymptotically can be stated as:  
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By ignoring the small terms in the 
dimensionless quantities 1 2and  with 1  , the 
above equations in dimensional form simplifies 
as:  
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2. 1. Governing equations 

 

Consider a steady three-dimensional flow of a 
Sisko ferrofluid over a stretching sheet in the 
presence of non-uniform heat source or sink, 
nonlinear thermal radiation, chemical reaction 
and suction/injection effects. The Sisko 
ferrofluid occupies the space 0z   and it is in 
motion by an elastic flat sheet in the plane 0z  , 
by keeping at a constant temperature, the sheet 
is being continuously stretched with linear 
velocities cx  and dy  in the x  and y  
directions, respectively (see Fig. 1). The 
constants c and d are positive real numbers 
relating to stretching of the sheet. Spherical 
shaped electrically conducting nanoparticles are 
taken into an account. The ambient temperature 
and concentration far away from the sheet is 
uniform and taken as ,T C 

.  

 
Fig. 1. Physical model of the problem. 

The governing steady three-dimensional flow of 
a Sisko ferrofluid are approximated by the 
boundary layer theory are:  
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subjected to the following boundary conditions: 
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Here  , ,u v w  are unknown velocity 
components ,  and zx y directions, T  is the 
temperature, C  is the concentration, W  is the 
suction/injection velocity, 

BD  is the diffusion 
coefficient, 

nf  is the density of nanofluid, 

( )p nfc  is the heat capacitance of nanofluid 

and nfk  is the effective thermal conductivity of 
nanofluid. These nanofluid constants are given 
by: 



JCARME                                          Three-dimensional chemically . . .                                 Vol. 7, No. 2 

213 
 

( ) (1 )( ) ( )nf f s       , 
( ) (1 )( ) ( )p nf p f p sc c c       ,

2.5(1 )
f

nf







  

( 2 ) 2 ( )
( 2 ) ( )

nf s f f s

f s f f s

k k k k k

k k k k k





  


  
,

3( 1)1 , ,
( 2) ( 1)

s
nf f

f

 
  

   

 
   

   

(1 ) ,nf f s                                      (21) 
 

where   is the nano or ferroparticle volume 
fraction. The subscripts f  and s refer to fluid 
and solid fraction properties, respectively.  
The time dependent non-uniform heat 
source/sink '''q is defined as (Ref. [23]): 
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In the above equation, positive values of 
* *,A B correspond to heat generation, negative 

values correspond to heat absorption, and rq  is 
the radiative heat flux. Using Roseland 
approximation, the radiative heat flux is given 
by (Ref. [3]): 

 
*

3
*

4 ,
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T
q T

k z

 
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where 
*  and 

*k are the Stefan-Boltzmann 
constant and mean absorption coefficients, 
respectively. Here the energy equation is 
nonlinear. Now the above equations can be 
written as:  
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                                                                      (24) 

The governing coupled partial differential Eqs. 
(15-19) are transformed to couple ordinary 

differential equations by introducing 
transformation variables: 
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(25)

 

 
The momentum and heat transfer equations 
with the associated boundary conditions reduce 
to:  
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with the transformed boundary conditions: 
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where the prime stand for differentiation with 
respect to   and   is the stretching ratio 
parameter. Further, M is the magnetic field 
parameter, Re ,Rea b  are the local Reynolds 
number,   is the material parameter of Sisko 
ferrofluid, and Pr  is the generalized Prandtl 
number, Ra  is the radiation parameter, Kr  is 
the chemical reaction parameter, Le  is the 
Lewis number and S is the suction/injection 
parameter,  which are defined as:  
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The physical quantities of main interest are the 
skin-friction coefficients and the local Nusselt 
number are given by: 
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3. Numerical procedure 

 

The nonlinear ordinary differential Eqs.  (26-
29) subjected to the boundary conditions (30) 
are solved numerically using Runge-Kutta and 
Newton’s methods (Mallikarjuna et al. [31]). In 
this study, the unspecified initial conditions are 
assumed for unknown variables, and the 
transformed first order differential equations are 
integrated numerically as an initial valued 
problem to a given terminal point. The accuracy 
of the assumed missing initial condition can be 
checked by comparing the calculated value of 
the different variable at the terminal point. 
These calculations are carried out using Matlab.  

4. Results and discussion 

 

The effect of various non-dimensional 
governing parameters on the velocity, 
temperature, and concentration profiles along 
with the friction factor coefficients, local 
Nusselt, and Sherwood numbers are discussed 
and presented through graphs and tables. The 
followings are considered for numerical 
calculations: 

* * 0.1, 0.5,A B Kr     

1,Le 2, 1.1, 3wRa M n       .  

Throughout the analysis, these values are kept 
constant except the values as shown in the 
corresponding graphs and tables. In this paper, 
green color indicates suction case and red color 
indicates the injection case. The thermophysical 
properties of ferroparticles along with the base 
fluid are displayed in Table 1.  
Figures 2-4 illustrate that the influence of 
magnetic field parameter on the velocity and 
temperature profiles of the Sisko ferrofluid. It is 
evident that an increase in the magnetic field 
parameter depreciates the velocity profiles and 
increases the temperature profiles of the flow. 
Generally, with an increase in the magnetic 
field parameter the opposite force to flow 
direction which is called the Lorentz’s force is 
developed. Due to this reason, a fall in the 
velocity profiles of the flow is seen. It is 
interesting to mention here that the heat transfer 
performance is high in the injection case while 
compared with the suction case.  
The influence of ferroparticle volume fraction 
( )  on the velocity and temperature profiles of 
the flow for both suction/injection cases are 
shown in Figs. 5-7. It is noticed that an 
increasing value of the ferroparticle volume 
fraction enhances the temperature profiles, 
whereas it suppresses the velocity profiles of 
the flow. This may happen due to the improper 
selection of the nanoparticle volume fraction 
and low disturbances of the flow. 
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Fig. 2. Velocity field for different values of 
magnetic field parameter. 

 

 
Fig. 3. Velocity field for different values of 
magnetic field parameter. 

 
Fig. 4. Temperature field for different values of 
magnetic field parameter. 

 
Fig. 5. Velocity field for different values of 
ferroparticle volume fraction. 
 

 
Fig. 6. Velocity field for different values of 
ferroparticle volume fraction. 

 
Fig. 7. Temperature field for different values of 
ferroparticle volume fraction. 
 
 



JCARME                                             C. Siva Krishnama Raju, et al.                                   Vol. 7, No. 2 

216 
 

The effect of the material parameter ( )  on the 
velocity and temperature profiles for both 
suction and injection cases are displayed in 
Figs. 8-10. It is clear from these plots that the 
momentum boundary layer thickness is 
enhanced with an increase in the material 
parameter, and temperature profiles show 
contrary results to it. The similar type of results 
has been noticed from the Figs. 11-13 with 
increasing values of the power-law index ( )n . 
In the above two cases in the presence of 
material parameter and power-law index, a rise 
in the momentum boundary layer thickness of 
the Sisko ferrofluid is seen. This concludes that 
Sisko ferrofluid effectively enhances the 
momentum boundary layer thickness. It is also 
interesting to mention that the boundary layer 
thickness is more in presence of injection when 
compared with suction.  

 
Fig. 8. Velocity field for different values of material 
parameter. 

 
Fig. 9. Velocity field for different values of material 
parameter. 

 
Fig. 10. Temperature field for different values of 
material parameter. 

 
Fig. 11. Velocity field for different values of power 
law index. 

 
Fig. 12. Velocity field for different values of power 
law index. 
 
The influence of non-uniform heat source/sink 
parameter on the temperature profiles of the 
flow is shown in Fig. 14. It is observed a 
significant increase in the thermal boundary 
layer thickness with an increase in the non-
uniform heat source/sink parameter. Physically 
increasing values of the non-uniform heat 
source/sink parameter releases heat energy to 
the flow. Due to this reason, an enhancement in 
the temperature profiles is seen. 
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Fig. 13. Temperature field for different values of 
power law index. 

 
It is prominent to mention here that the positive 
values of 

*A  acts like heat generator.  The 
similar type of results is observed with an 
increase in the nonlinear thermal radiation 
parameter.  This agrees the general physical 
behavior of the radiation parameter which is 
displayed in Fig. 15. 

 
Fig. 14. Temperature field for different values of 
non-uniform heat source/sink. 
 
Figure 16 depicts the effect of chemical 
reaction parameter on the concentration profiles 
of the flow. It is evident that an increasing value 
of the chemical reaction parameter depreciates 
the concentration profiles. This is due to an 
increase in the local interfacial mass transfer in 
the flow. It is also observed that the influence 
of chemical reaction is high in the presence of 
injection.  
Figures 17 and 18 illustrate the effect of 
stretching ratio parameter on velocity and 
temperature profiles of the flow. It is clear from 
the plots that increasing values of the stretching 

ratio parameter enhances the velocity profiles 
and depreciates the temperature profiles of the 
flow. 
Table 2 represents the comparison of the 
present results for skin friction coefficients and 
local Nusselt number with the existed results of 
Munir et al. [12], Wang [27], and Lui et al. [28] 
under some special limited cases. An excellent 
agreement of the present results with the existed 
results was found. This shows the validity of 
the present study along with the accuracy of the 
numerical technique used in this study. 

 
Fig. 15. Temperature field for different values of 
nonlinear thermal radiation. 

 

 
Fig. 16. Concentration field for different values of 
chemical reaction parameter. 

 
Fig. 17. Velocity field for different values of 
stretching ratio parameter. 
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Fig. 18. Temperature field for different values of 
stretching ratio parameter. 
 
Tables 3 and 4 indicate the effects of various 
emerging thermophysical parameters on the 
friction  factor  coefficients,   local  Nusselt  and 

 Sherwood number for suction and injection 
cases. It is evident that the friction factor 
coefficients, heat and mass transfer rates, are 
enhanced with an increase in the material 
parameter. The similar types of results are 
observed with an increase in the power-law 
index ( )n . An increase in the ferroparticle 
volume fraction and magnetic field parameter 
enhances the local Nusselt number but reduces 
the friction factors along with the mass transfer 
rate. Thermal radiation does not influence the 
friction factor, and mass transfer rate but it 
helps to reduce the heat transfer rate. Chemical 
reaction parameter has a tendency to enhance 
the mass transfer rate. 

  
 Table 1. Thermophysical properties of water and ferroparticles. 

 3( / )kg m  ( / )pc J kgK  ( / )k W mK
 

( / )S m  

Water 997.1 4179 0.613 65.5 10  

3 4Fe O
 

5180 670 9.7 60.74 10  

 
Table 2. Comparison of the numerical values of the Skin-friction coefficients and the local Nusselt number, 
when * * 0, 1M A B n       for different values of . 

   ''(0)f  ''(0)g  '(0)  
0.0 Wang [27 ] 1 0 - 

Lui et al. [28 ] 1 0 - 
Munir et al. [12] 1 0 - 

Present Study 1 0.000001 - 
0.25 Wang [27 ] 1.048813 0.194564 - 

Lui et al. [28 ] 1.048813 0.194564 -0.665933 
Munir et al. [12 ] 1.048813 0.194564 -0.665939 

Present Study 1.048863 0.194545 -0.670002 
0.50 Wang [ 27] 1.093097 0.465205 - 

Lui et al. [28 ] 1.093097 0.465206 -0.735334 
Munir et al. [12] 1.093098 0.465207 -0.735336 

Present Study 1.093097 0.466205 -0.735338 
0.75 Wang [ 27] 1.134485 0.794622 - 

Lui et al. [28 ] 1.134486 0.794619 -0.796472 
Munir et al. [12 ] 1.134487 0.794619 -0.796472 

Present Study 1.134489 0.794625 -0.796472 
1.0 Wang [ 27] 1.173720 1.173720 - 

Lui et al. [28 ] 1.173721 1.173721 - 
Munir et al. [12 ] 1.173721 1.173721 - 

Present Study 1.173720 1.176920 - 
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Table 3.  Numerical values of the Skin-friction coefficients, Nusselt and Sherwood number for suction case. 
  M    Ra

 
n  *A

 
Kr
 

  (0)f   ''(0)g  '(0)  '(0)  
0.01        -2.128017 -0.719045 1.829309 8.874691 
0.1        -2.580015 -0.842045 1.673850 8.839714 
0.2        -2.889645 -0.933013 1.517820 8.816191 

 1       -2.580015 -0.842045 1.673850 8.839714 
 1.5       -3.381193 -1.178863 1.588122 8.770680 
 2       -4.187302 -1.518980 1.511145 8.704921 
  0.5      -4.023277 -1.236370 1.566608 8.739194 
  1      -2.570758 -0.837769 1.675319 8.840659 
  1.5      -1.888611 -0.636043 1.739755 8.895611 
   0.5     -2.570758 -0.837769 2.274628 8.840659 
   1     -2.570758 -0.837769 1.675319 8.840659 
   1.5     -2.570758 -0.837769 1.344931 8.840659 
    3    -2.570758 -0.837769 1.675319 8.840659 
    3.1    -2.643130 -0.756734 1.699003 8.879405 
    3.2    -2.698599 -0.668523 1.723445 8.918502 
     1   -2.570758 -0.837769 1.565069 8.840659 
     3   -2.570758 -0.837769 1.319990 8.840659 
     5   -2.570758 -0.837769 1.074804 8.840659 
      1  -2.610587 -0.856116 1.669227 2.427537 
      2  -2.610587 -0.856116 1.669227 3.377071 
      3  -2.610587 -0.856116 1.669227 4.222592 
       0.5 -2.580015 -0.842045 1.673850 0.701380 
       1 -2.681281 -2.681281 1.793631 0.676530 
       1.5 -2.756805 -6.416383 1.873797 0.657656 

 
Table 4. Numerical values of the Skin-friction coefficients, Nusselt and Sherwood number for injection case. 
  M    Ra  

n  
*A  Kr    

(0)f   ''(0)g  '(0)  '(0)  
0.0
1 

       -1.366335 -0.567689 0.634014 1.551658 
0.1        -1.521598 -0.635019 0.576586 1.530831 
0.2        -1.628276 -0.686772 0.526492 1.516160 

 1       -1.521598 -0.635019 0.576586 1.530831 
 1.5       -1.955587 -0.883057 0.455858 1.469728 
 2       -2.391369 -1.133237 0.347885 1.412351 
  0.5      -1.927866 -0.834551 0.461319 1.475021 
  1      -1.517053 -0.631947 0.577916 1.531717 
  1.5      -1.251409 -0.510441 0.645616 1.568031 
   0.5     -1.517053 -0.631947 0.663976 1.531717 
   1     -1.517053 -0.631947 0.577916 1.531717 
   1.5     -1.517053 -0.631947 0.512036 1.531716 
    3    -1.517053 -0.631947 0.577916 1.531717 
    3.1    -1.510755 -0.578088 0.605687 1.537163 
    3.2    -1.495857 -0.520053 0.632098 1.543772 
     1   -1.517053 -0.631947 0.466124 1.531717 
     3   -1.517053 -0.631947 0.217364 1.531715 
     5   -1.517053 -0.631947 -0.031850 1.531715 
      1  -1.536679 -0.645141 0.576936 7.438455 
      2  -1.536679 -0.645141 0.576937 8.711759 
      3  -1.536679 -0.645141 0.576937 9.741794 
       0.5 -1.521598 -0.635019 0.576587 4.050085 
       1 -1.589967 -1.589967 0.718370 3.505575 
       1.5 -1.648448 -3.100002 0.824390 3.115003 
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5. Conclusions 
 
This study presents a numerical solution for the 
three-dimensional flow of chemically reacting 
magnetohydrodynamic Sisko ferrofluid flow 
over a bidirectional stretching surface in the 
presence of non-uniform heat source/sink, 
nonlinear thermal radiation, and 
suction/injection. The conclusions are as 
follows: 
 Suction helps to enhance the momentum and 

thermal boundary layers of Sisko ferrofluid. 
 Magnetic field parameter and volume fraction 

of ferroparticles have a tendency to enhance 
the heat transfer rate. 

 The positive values of non-uniform heat 
source/sink parameters acts like heat 
generators. 

 Magnetic field parameter has a tendency to 
control the flow and reduce the friction factor. 

 Suction helps to enhance the concentration 
boundary layer thickness. 

 A rise in the material parameter helps to 
enhance the heat and mass transfer rate. 
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