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Abstract. Recently, Shigehalli and Kanabur [17] have put forward for new degree based topo-
logical indices, namely geometric-arithmetic index (GA1 index), SK index, SK1 index and SK2 index
of a molecular graph G. In this paper, we obtain the explicit formulas of these indices for polyhex
nanotube without the aid of a computer.
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1 Introduction

A topological index of a chemical compound is an integer, derived following a certain
rule, which can be used to characterize the chemical compound and predict certain physio-
chemical properties like boiling point, molecular weight, density and refractive index and so
forth [2, 19].

A molecular graph G = (V, E) is a simple graph having n = |V| vertices and m = |E|
edges. The vertices vi ∈ V represent non-hydrogen atoms and the edges (vi,vj) ∈ E represent
covalent bonds between the corresponding atoms. In particular, hydrocarbons are formed
only by carbon and hydrogen atom and their molecular graphs represent the carbon skeleton
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of the molecule [2, 19].
Molecular graphs are a special type of chemical graphs, which represent the constitution

of molecules. They are also called constitutional graphs. When the constitutional graph of a
molecule is represented in a two-dimensional basis it is called structural graph [2, 19].

All molecular graphs considered in this paper are finite, connected, loopless, and without
multiple edges. Let G = (V, E) be a graph with n vertices and m edges. The degree of a vertex
u ∈ V(G) is denoted by du(G) and is the number of vertices that are adjacent to u. The edge
connecting the vertices u and v is denoted by uv [5].

2 Computing the topological indices of polyhex nanotube

Motivated by previous research on polyhex nanotube [4, 6, 8–10, 12, 15–17], here we com-
pute the values of four new topological indices of polyhex nanotube.

2.1 Geometric-arithmetic (GA1) index

Let G = (V, E) be a molecular graph, and du is the degree of the vertex u. Then GA1 index
of G is defined as

GA1(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2
√

dG(u).dG(v)
,

Where GA1 index is considered for distinct vertices. The above equation is the sum of the
ratio of the arithmetic mean and geometric mean of u and v, where dG(u) (or dG(v)) denotes
the degree of the vertex u (or v).

2.2 SK Index

The SK index of a graph G = (V, E) is defined as

SK(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2

,

where dG(u) and dG(v) are the degrees of the vertices u and v in G.

2.3 SK1 Index

The SK1 index of a graph G = (V, E) is defined as

SK1(G) = ∑
u,v∈E(G)

dG(u).dG(v)
2

.

where dG(u) and dG(v) are the product of the degrees of the vertices u and v in G.
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2.4 SK2 Index

The SK2 index of a graph G = (V, E) is defined as

SK2(G) = ∑
u,v∈E(G)

(
dG(u) + dG(v)

2

)2

,

where dG(u) and dG(v) are the product of the degrees of the vertices u and v in G.

3 Main Results

3.1 Armchair polyhex nanotubes

Consider the armchair polyhex nanotubes G = TUAC6[m,n], where m denotes number of
hexagons in first row and n denotes the number of rows. The number of vertices/atoms of
armchair polyhex nanotubes is equal to

|V (TUAC6 [m,n])| = 2m (n + 2) ,

and the number of edges/bonds is

|E (TUAC6 [m,n])| = 3mn + 4m.

There are three different kinds of edges of G depending on the degree of terminal vertices
of edges.

Figure 1. Graph of armchair polyhex TUAC6[5,9] nanotube.

(da, db) where a,b ∈ E(H) (2,2) (2,3) (3,3)
Number of edges 2m 4m 3mn − 2m

Table 1. Edge partition of 2D-lattice of H-naphtalenic nanotubes based on degrees of end vertices of
each edge.
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Theorem 3.1. Consider the graph of TUAC6[m,n] nanotubes, then its GA1 index is equal to

GA1(TUAC6[m,n]) =
(

3n +
10√

6

)
m.

Proof. Consider the TUAC6[m,n] nanotube. The number of vertices in TUAC6[m,n] are
2m(n + 2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m.
Now using different type of edges corresponding to the degrees of terminal vertices of edges
of G given in Table 1 we compute the geometric-arithmetic index of G which is expressed as

GA1(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2
√

dG(u).dG(v)
.

This implies that

GA1(TUAC6) = (2,2)
(

2 + 2
2
√

4

)
+ (2,3)

(
2 + 3
2
√

6

)
+ (3,3)

(
3 + 3
2
√

9

)
= 2m (1) + (4m)

(
5

2
√

6

)
+ (3mn − 2m) (1)

= 3mn +
10m√

6

=

(
3n +

10√
6

)
m.

Theorem 3.2. Consider the graph of TUAC6[m,n] nanotubes, then its SK index is equal to

SK(TUAC6[m,n]) = (9n + 8)m.

Proof. Consider the TUAC6[m,n] nanotube. The number of vertices in TUAC6[m,n] are
2m(n + 2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m.
Now using different type of edges corresponding to the degrees of terminal vertices of edges
of G given in Table 1 we compute the SK index of G which is expressed as

SK(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2

.

This implies that

SK(TUAC6[m,n]) = (2,2)
(

2 + 2
2

)
+ (2,3)

(
2 + 3

2

)
+ (3,3)

(
3 + 3

2

)
= 2m (2) + 4m

(
5
2

)
+ (3mn − 2m) (3)

= 4m + 10m + 9mn − 6m

= (9n + 8)m.
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Theorem 3.3. Consider the graph of TUAC6[m,n] nanotubes, then its SK1 index is equal to

SK1(TUAC6[m,n]) =
(

27n
2

− 7
)

m.

Proof. Consider the TUAC6[m,n] nanotube. The number of vertices in TUAC6[m,n] are
2m(n + 2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m.
Now using different type of edges corresponding to the degrees of terminal vertices of edges
of G given in Table 1 we compute the SK1 index of G which is expressed as

SK1(G) = ∑
u,v∈E(G)

dG(u).dG(v)
2

.

This implies that

SK1(TUAC6[m,n]) = (2,2)
(

2 × 2
2

)
+ (2,3)

(
2 × 3

2

)
+ (3,3)

(
3 × 3

2

)
= 2m (2) + 4m

(
6
2

)
+ (3mn − 2m)

(
9
2

)
= 4m + 12m +

27mn
2

− 9m

=

(
27n

2
− 7

)
m.

Theorem 3.4. Consider the graph of TUAC6[m,n] nanotubes, then its SK2 index is equal to

SK2(TUAC6[m,n]) = (27n + 15)m.

Proof. Consider the TUAC6[m,n] nanotube. The number of vertices in TUAC6[m,n] are
2m(n + 2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m.
Now using different type of edges corresponding to the degrees of terminal vertices of edges
of G given in Table 1 we compute the SK2 index of G which is expressed as

SK2(G) = ∑
u,v∈E(G)

(
dG(u) + dG(v)

2

)2

.

SK2(TUAC6[m,n]) = (2,2)
(

2 + 2
2

)2

+ (2,3)
(

2 + 3
2

)2

+ (3,3)
(

3 + 3
2

)2

= 2m (4) + 4m
(

25
4

)
+ (3mn − 2m)

(
36
4

)
= 8m + 25m + 27mn − 18m

= (27n + 15)m.
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3.2 Zigzag-edge polyhex nanotubes

Consider the armchair polyhex nanotubes H = TUZC6[m,n], where m denotes number of
hexagons in first row and n denotes the number of rows. The number of vertices/atoms of
zigzag-edge polyhex nanotubes is equal to

|V (TUZC6 [m,n])| = 2m (n + 2) ,

and the number of edges/bonds is

|E (TUZC6 [m,n])| = 3mn + 4m.

There are two different kinds of edges of H depending on the degree of terminal vertices
of edges.

Figure 2. Graph of zigzag edge polyhex TUZC6 [7, 5] nanotube.

(da,db) where a,b ∈ E(H) (2,3) (3,3)
Number of edges 4m 3mn − 2m

Table 2. Edge partition of 2-dimentional graph of TUZC6 nanotube with respect to degree of end
vertices of edges.

Theorem 3.5. Consider the graph of TUZC6[m,n] nanotubes, then its GA1 index is equal to

GA1(TUAC6[m,n]) = 3mn +

(
10√

6
− 2

)
m.

Proof. Consider the TUZC6[m,n] nanotube. The number of vertices in TUZC6[m,n] are 2m(n+

2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m. Now us-
ing different type of edges corresponding to the degrees of terminal vertices of edges of G
given in Table 1 we compute the geometric-arithmetic index of G which is expressed as

GA1(H) = ∑
u,v∈E(G)

dG(u) + dG(v)
2
√

dG(u).dG(v)
.
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This implies that

GA1(TUZC6) = (2,3)
(

2 + 3
2
√

6

)
+ (3,3)

(
3 + 3
2
√

9

)
= (4m)

(
5

2
√

6

)
+ (3mn − 2m) (1)

=
10m√

6
+ 3mn − 2m

= 3mn +

(
10√

6
− 2

)
m.

Theorem 3.6. Consider the graph of TUZC6[m,n] nanotubes, then its SK index is equal to

SK(TUZC6[m,n]) = 9mn + 4m.

Proof. Consider the TUZC6[m,n] nanotube. The number of vertices in TUZC6[m,n] are 2m(n+

2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m. Now us-
ing different type of edges corresponding to the degrees of terminal vertices of edges of G
given in Table 1 we compute the SK index of G which is expressed as

SK(H) = ∑
u,v∈E(G)

dG(u) + dG(v)
2

.

This implies that

SK(TUAC6[m,n]) = (2,3)
(

2 + 3
2

)
+ (3,3)

(
3 + 3

2

)
= 4m

(
5
2

)
+ (3mn − 2m) (3)

= 10m + 9mn − 6m

= 9mn + 4m.

Theorem 3.7. Consider the graph of TUZC6[m,n] nanotubes, then its SK1 index is equal to

SK1(TUZC6[m,n]) =
(

27n
2

+ 3
)

m.

Proof. Consider the TUZC6[m,n] nanotube. The number of vertices in TUZC6[m,n] are 2m(n+

2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m. Now us-
ing different type of edges corresponding to the degrees of terminal vertices of edges of G
given in Table 1 we compute the SK1 index of G which is expressed as

SK1(H) = ∑
u,v∈E(G)

dG(u).dG(v)
2

.
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This implies that

SK1(TUZC6[m,n]) = (2,3)
(

2 × 3
2

)
+ (3,3)

(
3 × 3

2

)
= 4m

(
6
2

)
+ (3mn − 2m)

(
9
2

)
= 12m +

27mn
2

− 9m

=
27mn

2
+ 3m

=

(
27n

2
+ 3

)
m.

Theorem 3.8. Consider the graph of TUZC6[m,n] nanotubes, then its SK2 index is equal to

SK2(TUZC6[m,n]) = (27n + 7)m.

Proof. Consider the TUZC6[m,n] nanotube. The number of vertices in TUZC6[m,n] are 2m(n+

2) and the number of edges of the nanotube of edges of the nanotube is 3mn + 4m. Now us-
ing different type of edges corresponding to the degrees of terminal vertices of edges of G
given in Table 1 we compute the SK2 index of G which is expressed as

SK2(H) = ∑
u,v∈E(G)

(
dG(u) + dG(v)

2

)2

.

SK2(TUZC6[m,n]) = (2,3)
(

2 + 3
2

)2

+ (3,3)
(

3 + 3
2

)2

= 4m
(

25
4

)
+ (3mn − 2m)

(
36
4

)
= 25m + 27mn − 18m

= 27mn + 7m

= (27n + 7)m.

Concluding Remarks: A generalized formula for geometric-arithmetic index (GA1 index),
SK index, SK1 index, SK2 index for polyhex nanotubes is obtained without using computer.
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