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Abstract. Let G be a graph with a vertex weight ω and the vertices v1, . . . ,vn. The Laplacian
matrix of G with respect to ω is defined as Lω(G) = diag(ω(v1), · · · ,ω(vn))− A(G), where A(G) is
the adjacency matrix of G. Let µ1, · · · ,µn be eigenvalues of Lω(G). Then the Laplacian energy of G with

respect to ω is defined as LEω(G) = ∑n
i=1

∣∣∣µi − ω
∣∣∣, where ω is the average of ω, i.e., ω =

∑n
i=1 ω(vi)

n
.

In this paper, we consider several natural vertex weights of G and obtain some inequalities between
the ordinary and Laplacian energies of G with corresponding vertex weights. Finally, we apply our
results to the molecular graph of toroidal fullerenes (or achiral polyhex nanotorus).
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1 Introduction

In this paper, we are concerned with simple graphs. Let G be a simple graph, with
nonempty vertex set V(G) = {v1, . . . ,vn} and edge set E(G) = {e1, . . . , em}, that is to say, G is
a simple (n,m)-graph. Let ω be a vertex weight of G, i.e., ω is a function from V(G) to the
set of positive real numbers. In this case, we say that G is a graph with a vertex weight ω. A
vertex weight ω could be a constant function. In this case, we say G is ω-regular. Namely, G
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is ω-regular if for any u,v ∈ V(G), ω(u) = ω(v). Observe that a well-known vertex weight of
a graph is the vertex degree assigning to each vertex its degree. Let us denote it by deg. The
diagonal matrix of order n whose (i, i)-entry is ω(vi), is called the diagonal vertex weight
matrix of G with respect to ω and is denoted by Dω(G), i.e.,

Dω(G) = diag(ω(v1), . . . ,ω(vn)).

The adjacency matrix A(G) = (aij) of G is a (0,1)-matrix defined by aij = 1, if and only if
the vertices vi and vj are adjacent. Then the matrices

Ldeg(G) = Ddeg(G)− A(G) and L†
deg(G) = A(G) + Ddeg(G),

are called Laplacian and signless Laplacian matrix of G, respectively (see [8,9,20–23]). These
matrices were generalized for arbitrary vertex weighted graphs (see [27, 28]). Let G be a
simple graph with the vertex weight ω. Then we shall call the matrices

Lω(G) = Dω(G)− A(G) and L†
ω(G) = A(G) + Dω(G),

the weighted Laplacian and the weighted signless Laplacian matrix of G with respect to the
vertex weight ω. Let X = {x1, x2, ..., xn} be a data set of real numbers. The mean absolute
deviation (often called the mean deviation) MD(X) and variance Var(X) of X is defined as

MD(X) =
1
n

n

∑
i=1

|xi − x|, Var(X) =
1
n

n

∑
i=1

(xi − x)2,

where x =
∑n

i=1 xi

n
is the arithmetic mean of the distribution. Note that an easy application

of the Cauchy-Schwarz inequality gives that the mean deviation is a lower bound on the
standard deviation (see [4]).

MD(X) ≤
√

Var(X). (1)

The mean deviation and variance of G with respect to ω, denoted by MDω(G) and Varω(G),
respectively, is defined as

MDω(G) = MD(ω(v1), . . . ,ω(vn)), Varω(G) = Var(ω(v1), . . . ,ω(vn)).

It follows from Eq. (1) that MDω(G) ≤
√

Varω(G). It is worth mentioning that Vardeg(G)

is a well-investigated graph invariant (see [3, 16]). Let λ1,λ2, . . . ,λn be eigenvalues of the
adjacency matrix A(G) of graph G. It is known that ∑n

i=1 λi = 0. The notion of the energy
E(G) of an (n,m)-graph G was introduced by Gutman in connection with the π-molecular
energy (see [10, 11, 14, 19]). It is defined as

E(G) =
n

∑
i=1

|λi| = nMD(λ1,λ2, . . . ,λn).
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For details of the theory of graph energy see [11, 13, 26]. Let n ≥ µ1,µ2, . . . ,µn = 0 be
eigenvalues of Laplacian matrix Ldeg(G) of graph G. It is known that ∑n

i=1 µi = 2m. Gutman
and Zhou defined the Laplacian energy of an (n,m)-graph G for the first time (see [15] ) as

LE(G) =
n

∑
i=1

∣∣∣µi −
2m
n

∣∣∣ = nMD(µ1, . . . ,µn).

Numerous results on the Laplacian energy have been obtained, see for instance [2,6,7,12,

24, 25, 29]. Note that in the definition of Laplacian energy
2m
n

is the average vertex degree
of G. This motivates us to extend their definition to the graphs equipped with an arbitrary
vertex weight. Let G be a graph with the vertex set V = {v1, . . . ,vn} and with an arbitrary
vertex weight ω. Let µ1,µ2, . . . ,µn be eigenvalues of the weighted Laplacian matrix Lω(G) of
graph G with respect to the vertex weight ω. Then we [27] proposed the Laplacian energy
LEω(G) of G with respect to the vertex weight ω as

LEω(G) =
n

∑
i=1

∣∣∣µi − ω
∣∣∣ = nMD(µ1, . . . ,µn), (2)

where

ω =
∑n

i=1 ω(vi)

n
and

n

∑
i=1

µi = nω. (3)

Note that LEdeg(G) = LE(G). Let G be a graph with an arbitrary vertex weight ω. Some
inequalities between E(G) and LEω(G) were established in [28]; and therein, the following
three theorems were proved.

Theorem 1.1. Let G be a connected (n,m)-graph with a vertex weight ω. Then

LEω(G) ≤ nMDω(G) + E(G). (4)

Moreover, the equality in (4) holds if and only if G is ω-regular.

Theorem 1.2. Let G be a bipartite graph with a vertex weight ω. Then

LEω(G) ≥ E(G). (5)

Moreover, the equality in (5) holds if and only if G is a ω-regular graph.

Theorem 1.3. Let G be a bipartite (m,n)-graph with a vertex weight ω. Then

max
{

nMDω(G),E(G)
}
≤ LEω(G) ≤ nMDω(G) + E(G). (6)

In this paper, we aim to apply the above theorems to graphs with some natural vertex
weights and establish relationships between some graph invariants and Laplacian graph en-
ergy with respect to corresponding vertex weight.
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2 Main Results

Having a molecule, if we represent atoms by vertices and bonds by edges, we obtain a
molecular graph. Graph theoretic invariants of molecular graphs, which predict properties of
the corresponding molecule, are known as topological indices. The oldest topological index
is the Wiener index, which was introduced in 1947. Since then, several topological indices
have been proposed to predict characteristics of chemical compounds like physio-chemical,
pharmacologic, toxicological and other biological properties. In this article, we deal with
Wiener index, total eccentricity index and first Zagreb index.

2.1 Wiener index

Let G be a connected graph. Given two vertices u and v in V(G), the distance between u
and v, denoted by d(u,v) = dG(u,v), is the length of the shortest path connecting them. The
Wiener index W(G) of a connected graph G is defined to be the sum of distances between
any two unordered pair of vertices of G, i.e.

W(G) = ∑
{u,v}⊆V(G)

dG(u,v) =
1
2 ∑

u,v∈V(G)

dG(u,v).

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v to all
other vertices in G [?], i.e.,

Tr(v) = ∑
u∈V(G)

dG(u,v).

It is clear that
W(G) =

1
2 ∑

v∈V(G)

Tr(v).

A connected graph G is said to be k-transmission regular if Tr(v) = k for every vertex v ∈
V(G). The transmission regular graphs are exactly the distance-balanced graphs introduced
in [17]. They are also called self-median graphs [5]. We may consider the transmission of
an arbitrary vertex as a vertex weight with the average Tr = 2W(G)

n . In this point of view, it
follows from (2) that

LETr(G) =
n

∑
i=1

∣∣∣µi −
2W(G)

n

∣∣∣ = nMD(µ1, . . . ,µn). (7)

Theorem 2.1. Let G be a connected graph with n vertices. Then the following hold:

(i)
LETr(G) ≤ nMDTr(G) + E(G). (8)

(ii) If G is bipartite, then
LETr(G) ≥ E(G), (9)

max
{

nMDTr(G),E(G)
}
≤ LETr(G). (10)
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Moreover, the equality in (8),(9) and (10) holds if and only if G is transmission regular.

Proof. Let G be a connected graph with n vertices. Then this theorem follows by applying
Theorems 1.1,1.2,1.3 to G equipped with the vertex weight Tr and the fact that a graph is
transmission regular if and only if it is Tr-regular.

2.2 Zagreb indices

First Zagreb index of a graph G is defined as

M1(G) = ∑
u∈V(G)

degG(u)2.

For a graph G, denote by t(u) the 2-degree of vertex u, which is the sum of the degrees of
the vertices adjacent to u; a graph is said to be 2-degree regular if t(u) is constant for each u.
It is known that

M1(G) = ∑
u∈V(G)

t(u),

We may consider the 2-degree of an arbitrary vertex as a vertex weight with the average
t = M1(G)

n . In this point of view, it follows from (2) that

LEt(G) =
n

∑
i=1

∣∣∣µi −
M1(G)

n

∣∣∣ = nMD(µ1, . . . ,µn). (11)

Theorem 2.2. Let G be a connected graph with n vertices. Then the following hold:

(i)
LEt(G) ≤ nMDt(G) + E(G). (12)

(ii) If G is bipartite, then
LEt(G) ≥ E(G), (13)

max
{

nMDt(G),E(G)
}
≤ LEt(G). (14)

Moreover, the equality in (12),(13) and (14) holds if and only if G is 2-degree regular.

Proof. Let G be a connected graph with n vertices. Then this theorem follows by applying
Theorems 1.1,1.2,1.3 to G equipped with the vertex weight t and the fact that a graph is 2-
degree regular if and only if it is t-regular.

Let us define deg2(u) = degG(u)2, the square vertex degree of u. So we may consider deg2

as a vertex weight of G with the average deg2 = M1(G)
n . From this point of view, a graph is

square vertex degree regular if and only if it is vertex degree regular. In this point of view, it
follows from (2) that

LEdeg2(G) =
n

∑
i=1

∣∣∣µi −
M1(G)

n

∣∣∣ = nMD(µ1, . . . ,µn). (15)
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Theorem 2.3. Let G be a connected graph with n vertices. Then the following hold:

(i)
LEdeg2(G) ≤ nMDdeg2(G) + E(G). (16)

(ii) If G is bipartite, then
LEdeg2(G) ≥ E(G), (17)

max
{

nMDdeg2(G),E(G)
}
≤ LEdeg2(G). (18)

Moreover, the equality in (17) and (18) holds if and only if G is vertex degree regular.

Proof. Let G be a connected graph with n vertices. Then this theorem follows by applying
Theorems 1.1,1.2,1.3 to G equipped with the vertex weight deg2 and the fact that a graph is
vertex degree regular if and only if it is deg2-regular.

2.3 Total eccentricity index

The eccentricity ε(u) of the vertex u of a connected graph G is the distance from u to any
vertex farthest away from it in G, i.e., ε(u) = maxv∈V(G) d(u,v). The maximum eccentricity
over all vertices of G is called the diameter of G and is denoted by D(G); the minimum
eccentricity among the vertices of G is called the radius of G and is denoted by R(G). The
set of all vertices of minimum eccentricity is called the center of G. A connected graph G
is called self-centred if ε(u) = R(G) for each u ∈ V(G). The total eccentricity index of a
connected graph G, denoted by ζ(G), is defined as the sum of eccentricities of vertices of G,
i.e., ζ(G) = ∑u∈V(G) ε(u).

One may consider the eccentricity of a vertex as a vertex weight of G with the average
ε = ζ(G)

n . From this point of view, a graph is ε-regular if and only if it is self-centred. In this
point of view, it follows from (2) that

LEε(G) =
n

∑
i=1

∣∣∣µi −
ζ(G)

n

∣∣∣ = nMD(µ1, . . . ,µn). (19)

Theorem 2.4. Let G be a connected graph with n vertices. Then the following hold:

(i)
LEε(G) ≤ nMDε(G) + E(G). (20)

(ii) If G is bipartite, then
LEε(G) ≥ E(G), (21)

max
{

nMDε(G),E(G)
}
≤ LEε(G). (22)

Moreover, the equality in (20),(21) and (22) holds if and only if G is self-centred.
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Proof. Let G be a connected graph with n vertices. Then this theorem follows by applying
Theorems 1.1, 1.2, 1.3 to G equipped with the vertex weight ε and the fact that a graph is
self-centred if and only if it is ε-regular.

Note that a tree is a connected bipartite graph. Therefore, in this paper, the hypothesis
”connected bipartite graph” could be replaced by ”Tree”.

A graph G is called vertex-transitive if for every two vertices u and v of G, there exists an
automorphism σ of G, such that σ(u) = σ(v). It is known that any vertex-transitive graph is
vertex degree regular, transmission regular and self-centred. Hence, it follows that

Corollary 2.5. Let G be a connected vertex-transitive graph. Then the equality holds in (8), (12),
(17), (20). In fact,

E(G) = LETr(G) = LEt(G) = LEdeg2(G) = LEdeg(G) = LEε(G).

A nanostructure is an object of intermediate size between molecular and microscopic
structures. It is a product derived through engineering at the molecular scale. In what fol-
lows, we aim to apply Corollary 2.5 to the molecular graph of a nanostructure called toroidal
fullerenes (or achiral polyhex nanotorus) (see Figure 1 and Figure 2).

Figure 1. A toroidal fullerene (or achiral polyhex nanotorus) T[p,q].

The following lemma was proved in [1, 30].

Lemma 2.6. The molecular graph of a polyhex nanotorus is vertex transitive.

The following is a direct consequence of Corollary 2.5 and Lemma 2.6.

Corollary 2.7. Let T be a molecular graph of a polyhex nanotorus. Then

E(T) = LETr(T) = LEt(T) = LEdeg2(T) = LEdeg(T) = LEε(T).

Concluding Remarks: In this paper by considering some vertex weights, some topological
indices appear in Laplcian graph energy and average weight. Note that several other vertex
weight and thus their corresponding Laplacian graph energy could be defined. For example
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Figure 2. A 2-dimensional lattice for an achiral polyhex nanotorus T[p,q].

if we define the weight of an arbitrary vertex u as deg(u)3, whose average one is F(G)
n , where

F(G) is referred to as forgotten Zagreb index.
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[24] M. Robbiano and R. Jiménez, Applications of a theorem by Ky Fan in the theory of Laplacian
energy of graphs. MATCH Commun. Math. Comput. Chem. 62 (2009) 537–552.

[25] W. So, M. Robbiano, N. M. M. de Abreu and I. Gutman, Applications of the Ky Fan theorem in the
theory of graph energy, Linear Algebra Appl. 432 (2010) 2163–2169.

[26] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[27] R. Sharafdini and H. Panahbar, On Laplacian energy of vertex weighted graphs, manuscript.
[28] R. Sharafdini, A. Ataei and H. Panahbar, Applications of a theorem by Ky Fan in the theory of

weighted Laplacian graph energy, Submited, eprint arXiv:1608.07939.
[29] B. Zhou, I. Gutman and T. Aleksic, A note on Laplacian energy of graphs, MATCH Commun.

Math. Comput. Chem. 60 (2008) 441–446.
[30] S. Yousefi, H. Yousefi-Azari, A. R. Ashrafi and M. H. Khalifeh, Computing Wiener and Szeged

indices of an achiral polyhex nanotorus, JSUT 33 (3) (2008) 7–11.

Citation: R. Sharafdini, H. Panahbar, Vertex weighted Laplacian graph energy and other topological indices , J. Disc.
Math. Appl. 8(4) (2023) 177–185.

https://doi.org/10.22061/jdma.2023.524

COPYRIGHTS
©2023 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attri-
bution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as
the original authors and source are cited. No permission is required from the authors or the publishers.

185


	Introduction
	Main Results
	Wiener index
	Zagreb indices
	Total eccentricity index


