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Abstract. The Graovac-Pisanski number is defined in 1991 e.g. more than 50 years after the def-
inition of Wiener number by Graovac and Pisanski. They called this new index as modified Wiener
number based on the sum of distances between all the pairs (u,α(u)) where α stands in the auto-
morphism group of given graph. In this paper, we investigate some results on the Graovac-Pisanski
number.

Keywords: automorphism of graph, Wiener number, orbit of action
Mathematics Subject Classification (2010): 05C12.

1 Introduction

By a graph we mean a collection of points and lines connecting them and we call them as
vertices and edges, denoted by V(Γ) and E(Γ), respectively. Two vertices x and y are adjacent
if xy ∈ E(Γ). The distance between two arbitrary vertices x,y ∈ V(Γ) denoted by d(x,y) is the
length of the shortest path between them. The Wiener number is defined as half sum of the
distances between all the pairs of vertices in Γ , see [15]. In other words,

W(Γ) =
1
2 ∑

x,y∈V(Γ)
d(x,y). (1)

Let Γ be a graph and uv ∈ E is an edge. An automorphism of Γ is a permutation β on V(Γ)
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with this property that β(uv) ∈ E(Γ) if and only if β(u)β(v) ∈ E(Γ), where β(u) denotes to
image of vertex u. The automorphism group of graph Γ is denoted by Aut(Γ).

The orbit of the vertex u ∈ V(Γ) is the set uΓ = {α(u) : α ∈ Aut(Γ)}. The graph Γ is said
to be transitive if it has only one orbit. This means that for every pair of vertices such as
u,v ∈ V(Γ), there is an automorphism σ ∈ Aut(Γ) such that σ(u) = v.

The modified wiener number of graph Γ is defined by Graovac and Pisanski in 1991 as
follows [10]:

Ŵ(Γ) =
|V(Γ)|
2|G| ∑

x∈V(Γ)
∑

α∈G
d(x,α(x)), (2)

where G = Aut(Γ). Ghorbani and Klavžar in [9] proposed the name ”Graovac-Pisanski in-
dex”. It is thus an unfortunate fact that the term modified Wiener index is nowadays used
also for an invariant different from the one of Graovac and Pisanski.

Theorem 1.1. [10]. Let Γ is a graph with automorphism group G = Aut(Γ) and vertex set
V(Γ). Let V1,V2, . . . ,Vk be all orbits of action G on V(Γ). Then

Ŵ(Γ) = |V(Γ)|
k

∑
i=1

W(Vi)

|Vi|
. (3)

From Theorem 1.1, one can see easily that a graph is vertex-transitive if and only if Ŵ(Γ) =
W(Γ). Similarly, Ŵ(Γ) = 0 if and only if Aut(Γ) ∼= id. This means that for all graph Γ, if
wΓ = W(Γ) then we have Ŵ(Γ) ∈ [0,wΓ]. In addition, if Γ is a non-vertex-transitive graph
then Ŵ(Γ) ∈ [1,wΓ].

2 Results

In this section, first we define a new topological index base on the distance between a
vertex and all images of it under the action of automorphism group. In continuing, we in-
vestigate some new results on the partial modified Wiener number. In [3] the authors proved
that

∆(g) = ∑
α∈G

d(g,α(g)) (4)

is a classical function and Ghorbani et al. in [8] showed that this function can be interpreted
in terms of irreducible characters of G. Hence, the distance between all pair of vertices in a
same orbit are important.

Definition 1. Let Γ is a graph with automorphism group G = Aut(Γ) and vertex set V(Γ).
Let V1,V2, . . . ,Vk be all orbits of action G on V(Γ). The partial modified Wiener index is

ˆPW(Γ) =
k

∑
i=1

W(Vi). (5)
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Since, for every pair of vertices such as x,y ∈ Vi, the number of automorphisms which
maps x to y is |G|/|Vi|, then

ˆPW(Γ) =
k

∑
i=1

W(Vi) =
1

2|G| ∑
x∈V(Γ)

∑
α∈G

|xG|d(x,α(x)). (6)

Since, the elemnts of any orbit is less than or equal with the number of vertices, we can
conclude that

ˆPW(Γ) ≤ Ŵ(Γ) (7)

and equality holds if and only if Γ is vertex-transitive. Similar to the Wiener number, the
partial modified Wiener number always is an integer while the Graovac-Pisanski number
may be a rational number. If Γ is a non-vertex-transitive graph with orbits Vi’s, then for
every Vi (1 ≤ i ≤ k) we have 1 ≤ |Vi| ≤ k and so

Ŵ(Γ)
ˆPW(Γ)

∈ [
n

n − 1
,n].

Theorem 2.1. Let Γ is a graph with automorphism group G = Aut(Γ) and vertex set V(Γ). Let
V1,V2, . . . ,Vk be all orbits of action G on V(Γ). Then

ˆPW(Γ) =
1
2

k

∑
i=1

|Vi|DVi(u), (8)

where DVi(u) = ∑v∈Vi
d(u,v).

Proof. It is a well-known fact that the action of automorphism group on its orbit is transitive.
Hence, for every pair of elements x,y ∈ Vi, DVi(x) = DVi(y). Hence, we can conclude that for
a vertex u ∈ Vi, we have

W(Vi) =
1
2
|Vi|DVi(u). (9)

This completes the proof.

Example 2.2. A fullerene is a three connected cubic planar graph whose faces are pentagons and
hexagons discoverd by H. Kroto and his team, see [4, 14]. The most stable cluster of fullerenes is
C60, a fullerene with exactly 60 carbon atoms, 12 pentagones and 20 hexagones, see Figure 1. It is
well-known that this fullerene is vertex-transitive and thus

Ŵ(Γ) = ˆPW(Γ) = W(Γ).

Theorem 2.3. Let Γ be a connected edge-transitive graph on n vertices. If Γ is not vertex-transitive,
then there is a subset X on p vertices such that

ˆPW(Γ) =
1
2
(pDX(x) + (n − p)DY(y)). (10)
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Figure 1. The fullerene graph C60.

Proof. Since Γ is edge-transitive but not vertex-transitive, Γ is bipartite. Suppose Γ = Γ(X,Y),
where |X| = p, |Y| = n − p. Suppose G = Aut(Γ), choose an arbitrary edge e = xy, where
x ∈ X and y ∈ Y. One can prove that V(Γ) = xG ∪ yG. Hence, Eq.(6) yields the proof.

Example 2.4. As an conclusion of above theorem, consider the star graph Sn on n + 1 vertices. It is
not difficult to see that this graph has two orbits a singleton orbit consist of the central vertex and the
other vertices compose the second orbit. Hence, for the central vertex u, we have DV1(u) = n and for
the vertex v belong to the second orbit we have DV1(v) = n(n − 1). Thus

ˆPW(Γ) =
1
2
(1 × n + (n − 1)× n(n − 1) = n(n2 − 2n + 2).

Example 2.5. Consider the path graph Pn on n vertices. It is not difficult to see that this graph has
⌊n/2⌋ orbits of order two. In the case that n is odd, there is also a singleton orbit V0 = {x}. Two
following cases hold:

1. n is odd. Suppose the orbits of the automorphism group action are V0,V1, · · · ,V⌊n/2⌋. It is not
difficult to see that W(Vi) = 2i, 1 ≤ i ≤ ⌊n/2⌋ and thus

ˆPW(Γ) =
⌊n/2⌋

∑
i=1

2i =
n − 1

2
n + 1

2
=

n2 − 1
4

.

2. n is even. In this case we have ⌊n/2⌋ orbits U1,U2, · · · ,U⌊n/2⌋, with W(Ui) = 2i − 1. This
implies that

ˆPW(Γ) =
⌊n/2⌋

∑
i=1

2i − 1 =
n2

4
.
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